- Browse by Author
Browsing by Author "McLeish, Michael J."
Now showing 1 - 10 of 20
Results Per Page
Sort Options
Item Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis(Beilstein, 2019-01-16) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceThiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions. Many are involved in stereospecific carbon–carbon bond formation and, consequently, have found increasing interest and utility as chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the activated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of the individual reactions. In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and (R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation, provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent enzymes, and, potentially, for the use of unnatural substrates in such reactions.Item Computational Study of Enantioselective Carboligation Catalyzed by Benzoylformate Decarboxylase(ACS, 2019-05) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceBenzoylformate decarboxylase (BFDC) is a thiamin-diphosphate enzyme that catalyzes the decarboxylation of benzoylformate to yield benzaldehyde and carbon dioxide. In addition to its natural reaction, BFDC is able to catalyze carboligation reactions in a highly enantioselective fashion, making the enzyme a potentially important biocatalyst. Here we use density functional theory calculations to investigate the detailed mechanism of BFDC-catalyzed carboligation and to elucidate the sources of the enantioselectivity. Benzaldehyde and acetaldehyde are studied as acceptors, for, when reacting with a benzaldehyde donor, they yield products with opposite enantiospecificity. For each of the acceptors, several possible binding modes to the active site are initially examined before the individual reaction paths leading to the two enantiomeric products are followed. The calculated energies are in good agreement with the experimental results, and the analysis of the transition states gives insight into the origins of the enantioselectivity.Item Design and Synthesis of Small-Molecule Protein-Protein Interaction Antagonists(2014) Han, Xu; Meroueh, Samy; Long, Eric C. (Eric Charles); McLeish, Michael J.Protein-protein interactions play a crucial role in a wide range of biological processes. Research on the design and synthesis of small molecules to modulate these proteinprotein interactions can lead to new targets and drugs to modulate their function. In Chapter one, we discuss the design and synthesis of small molecules to probe a proteinprotein interaction in a voltage-gated Ca2+ channel. Virtual screening identified a compound (BTT-3) that contained a 3,4-dihydro-3,4’-pyrazole core. This compound had modest biological activity when tested in a fluorescence polarization (FP) assay. The synthetic route to BTT-3 consisted of six steps. In addition, analogs of BTT-3 were made for a structure-activity study to establish the importance of a carboxylate moiety. We also synthesized a biotinylated benzophenone photo-affinity probe and linked it to BTT-3 to identify additional protein targets of the compound. In Chapter two, small-molecule antagonists targeting uPA-uPAR protein-protein interaction are presented. A total of 500 commercially-available compounds were previously identified by virtual screening and tested by a FP assay. Three classes of compounds were found with biological activity. The first class of compounds contains pyrrolidone core structures represented by IPR- 1110, the second class has a novel pyrrolo[3,4-c]pyrazole ring system, represented by xv IPR-1283 and the last series had compounds with a 1,2-disubstituted 1,2- dihydropyrrolo[3,4-b]indol-3(4H)-one core structure, represented by IPR-540. Each of these three compounds were synthesized and assessed by FP and ELISA assays. A binding mode of IPR-1110 with uPA was subsequently proposed. Based on this binding mode, another 61 IPR-1110 derivatives were synthesized by us to illustrate the SAR activity. Analogs of the other two series were also synthesized.Item Enzymatic Stetter Reaction: Computational Study of the Reaction Mechanism of MenD(American Chemical Society, 2021) Planas, Ferran; McLeish, Michael J.; Himo, Fahmi; Chemistry and Chemical Biology, School of ScienceQuantum chemical calculations are used to investigate the detailed reaction mechanism of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid (SEPHCHC) synthase (also known as MenD), a thiamin diphosphate-dependent decarboxylase that catalyzes the formation of SEPHCHC from 2-ketoglutarate and isochorismate. This enzyme is involved in the menaquinone biosynthesis pathway in M. tuberculosis and is thought of as a potential drug target for anti-tuberculosis therapeutics. In addition, MenD shows promise as a biocatalyst for the synthesis of 1,4-functionalized compounds. Models of the active site are constructed on the basis of available X-ray structures, and the intermediates and transition states involved in the reaction mechanism are optimized and characterized. The calculated mechanism is in good agreement with prior kinetic studies and gives new insights into the mode of action of the enzyme. In particular, the structure and role of the tetrahedral post-decarboxylation intermediate observed in X-ray structures are discussed.Item Exploring the mechanism of action of spore photoproduct lyase(2014-08-27) Nelson, Renae; Li, Lei; Long, Eric C. (Eric Charles); McLeish, Michael J.Spore photoproduct lyase (SPL) is a radical SAM (S-adenosylmethionine) enzyme that is responsible for the repair of the DNA UV damage product 5-thyminyl-5,6-dihydrothymine (also called spore photoproduct, SP) in the early germination phase of bacterial endospores. SPL initiates the SP repair process using 5'-dA• (5'-deoxyadenosyl radical) generated by SAM cleavage to abstract the H6proR atom which results in a thymine allylic radical. These studies provide strong evidence that the TpT radical likely receives an H atom from an intrinsic H atom donor, C141 in B. subtilis SPL. I have shown that C141 can be alkylated in native SPL by iodoacetamide treatment indicating that it is accessible to the TpT radical. Activity studies demonstrate a 3-fold slower repair rate of SP by C141A which produces TpTSO2 - and TpT simultaneously with no lag phase observed for TpTSO2- formation. Additionally, formation of both products shows a Dvmax kinetic isotope effect (KIE) of 1.7 ± 0.2 which is smaller than the DVmax KIE of 2.8 ± 0.3 for the WT SPL reaction. Removal of the intrinsic H atom donor by this single mutation disrupts the rate-limiting process in the enzyme catalysis. Moreover, C141A exhibits ~0.4 turnover compared to the > 5 turnovers in the WT SPL reaction. In Y97 and Y99 studies, structural and biochemical data suggest that these two tyrosine residues are also crucial in enzyme catalysis. It is suggested that Y99 in B. subtilis SPL uses a novel hydrogen atom transfer pathway utilizing a pair of cysteinetyrosine residues to regenerate SAM. The second tyrosine, Y97, structurally assists in SAM binding and may also contribute to SAM regeneration by interacting with radical intermediates to lower the energy barrier for the second H-abstraction step.Item Identification of Charge Transfer Transitions Related to Thiamin-Bound Intermediates on Enzymes Provides a Plethora of Signatures Useful in Mechanistic Studies(American Chemical Society, 2014-04-08) Patel, Hetalben; Nemeria, Natalia S.; Andrews, Forest H.; McLeish, Michael J.; Jordan, Frank; Department of Chemistry & Chemical Biology, School of ScienceIdentification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV–vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.Item Investigation of the Evolutionary Aspects of Thiamin Diphosphate-Dependent Decarboxylases(2015) Rogers, Megan P.; McLeish, Michael J.Thiamin diphosphate (ThDP)-dependent enzymes catalyze a wide range of reactions including the oxidative and nonoxidative decarboxylation of 2-keto acids, carboligation reactions, the cleavage of C-C bonds, and the formation of C-S, C-N, and C-O bonds. Surprisingly, given this diversity, all ThDP-dependent enzyme catalyzed reactions proceed through essentially the same intermediate. This suggests that these enzymes share a common ancestry and have evolved to become the diverse group of enzymes seen today. Sequence alignments have revealed that all ThDP-dependent enzymes share two common ThDP binding domains, the PYR domain and the PP domain. In addition to these conserved domains, over time, other domains have been added creating further diversity in this superfamily. For instance, the TH3 domain, found in many ThDP-dependent enzymes, serves the function of binding additional cofactors such as FAD in enzymes like acetohydroxyacid synthase (AHAS) but in others, like pyruvate decarboxylase (PDC), it has lost this function completely. The work presented here focuses on ThDP-dependent decarboxylases. In this thesis, several evolutionary aspects of this group of enzymes will be examined including (i) the characterization of an evolutionary forerunner in the presence of a mechanism-based inhibitor, (ii) the characterization of the minor isozymes of pyruvate decarboxylase from Saccharomyces cerevisiae, and (iii) the development of a selection method to increase the efficiency of the site-saturation mutagenesis used to study ThDP-dependent enzyme evolution.Item Kinetic and pH Studies on Human Phenylethanolamine N-Methyltransferase(Elsevier, 2013-11) Wu, Qian; McLeish, Michael J.; Department of Chemistry & Chemical Biology, IU School of SciencePhenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of norepinephrine (noradrenaline) to epinephrine (adrenaline) while, concomitantly, S-adenosyl-l-methionine (AdoMet) is converted to S-adenosyl-l-homocysteine. This reaction represents the terminal step in catecholamine biosynthesis and inhibitors of PNMT have been investigated, inter alia, as potential antihypertensive agents. At various times the kinetic mechanism of PNMT has been reported to operate by a random mechanism, an ordered mechanism in which norepinephrine binds first, and an ordered mechanism in which AdoMet binds first. Here we report the results of initial velocity studies on human PNMT in the absence and presence of product and dead end inhibitors. These, coupled with isothermal titration calorimetry and fluorescence binding experiments, clearly shown that hPNMT operates by an ordered sequential mechanism in which AdoMet binds first. Although the log V pH-profile was not well defined, plots of log V/K versus pH for AdoMet and phenylethanolamine, as well as the pKi versus pH for the inhibitor, SK&F 29661, were all bell-shaped indicating that a protonated and an unprotonated group are required for catalysis.Item LIPIDOMIC PROFILING OF DICTYOSTELIUM DISCOIDEUM(2012-08-27) Birch, Garrison L.; Minto, Robert; Blacklock, Brenda J.; McLeish, Michael J.The lipid profile of Dictyostelium discoideum, a cellular slime mold found evolutionarily between plants and animals, has never been clearly defined. To address this, the fatty acid content of vegetative cells was analyzed by gas chromatography-mass spectrometry of fatty acid methyl esters and their identities verified with synthesized authentic standards. The synthetic scheme developed to produce the unusual fatty acids found in D. discoideum was engineered to afford the labeling of compounds (2H) for use in feeding studies to elucidate the fatty acid elongation and desaturation pathways present in D. discoideum. After establishing the fatty acid profile and acyl metabolic pathway, an initial understanding the complex lipids present in D. discoideum, chiefly sphingolipids, was sought. Triple quadrupole and quadrupole time-of flight mass spectrometers equipped with electrospray ionization sources were used to identify these complex lipids.Item Mechanistic and Structural Insight to an Evolved Benzoylformate Decarboxylase with Enhanced Pyruvate Decarboxylase Activity(MDPI, 2016-12) Andrews, Forest H.; Wechsler, Cindy; Rogers, Megan P.; Meyer, Danilo; Tittmann, Kai; McLeish, Michael J.; Department of Chemistry and Chemical Biology, School of ScienceBenzoylformate decarboxylase (BFDC) and pyruvate decarboxylase (PDC) are thiamin diphosphate-dependent enzymes that share some structural and mechanistic similarities. Both enzymes catalyze the nonoxidative decarboxylation of 2-keto acids, yet differ considerably in their substrate specificity. In particular, the BFDC from P. putida exhibits very limited activity with pyruvate, whereas the PDCs from S. cerevisiae or from Z. mobilis show virtually no activity with benzoylformate (phenylglyoxylate). Previously, saturation mutagenesis was used to generate the BFDC T377L/A460Y variant, which exhibited a greater than 10,000-fold increase in pyruvate/benzoylformate substrate utilization ratio compared to that of wtBFDC. Much of this change could be attributed to an improvement in the Km value for pyruvate and, concomitantly, a decrease in the kcat value for benzoylformate. However, the steady-state data did not provide any details about changes in individual catalytic steps. To gain insight into the changes in conversion rates of pyruvate and benzoylformate to acetaldehyde and benzaldehyde, respectively, by the BFDC T377L/A460Y variant, reaction intermediates of both substrates were analyzed by NMR and microscopic rate constants for the elementary catalytic steps were calculated. Herein we also report the high resolution X-ray structure of the BFDC T377L/A460Y variant, which provides context for the observed changes in substrate specificity.