- Browse by Author
Browsing by Author "McLean, Catriona A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 11C-PiB PET can underestimate brain amyloid-β burden when cotton wool plaques are numerous(Oxford University Press, 2022) Abrahamson, Eric E.; Kofler, Julia K.; Becker, Carl R.; Price, Julie C.; Newell, Kathy L.; Ghetti, Bernardino; Murrell, Jill R.; McLean, Catriona A.; Lopez, Oscar L.; Mathis, Chester A.; Klunk, William E.; Villemagne, Victor L.; Ikonomovic, Milos D.; Pathology and Laboratory Medicine, School of MedicineIndividuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-β-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-β1-40 and amyloid-β1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-β42 antibodies but weakly with amyloid-β40 and amyloid-βN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-β plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-β1-42 and amyloid-β1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-β1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-β plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-β plaque loads. PiB has limited ability to detect amyloid-β aggregates in cotton wool plaques and may underestimate total amyloid-β plaque burden in brain regions with abundant cotton wool plaques.Item A peptide-centric quantitative proteomics dataset for the phenotypic assessment of Alzheimer's disease(Springer Nature, 2023-04-14) Merrihew, Gennifer E.; Park, Jea; Plubell, Deanna; Searle, Brian C.; Keene, C. Dirk; Larson, Eric B.; Bateman, Randall; Perrin, Richard J.; Chhatwal, Jasmeer P.; Farlow, Martin R.; McLean, Catriona A.; Ghetti, Bernardino; Newell, Kathy L.; Frosch, Matthew P.; Montine, Thomas J.; MacCoss, Michael J.; Neurology, School of MedicineAlzheimer's disease (AD) is a looming public health disaster with limited interventions. Alzheimer's is a complex disease that can present with or without causative mutations and can be accompanied by a range of age-related comorbidities. This diverse presentation makes it difficult to study molecular changes specific to AD. To better understand the molecular signatures of disease we constructed a unique human brain sample cohort inclusive of autosomal dominant AD dementia (ADD), sporadic ADD, and those without dementia but with high AD histopathologic burden, and cognitively normal individuals with no/minimal AD histopathologic burden. All samples are clinically well characterized, and brain tissue was preserved postmortem by rapid autopsy. Samples from four brain regions were processed and analyzed by data-independent acquisition LC-MS/MS. Here we present a high-quality quantitative dataset at the peptide and protein level for each brain region. Multiple internal and external control strategies were included in this experiment to ensure data quality. All data are deposited in the ProteomeXchange repositories and available from each step of our processing.Item C9orf72 Intermediate Repeats are Associated with Corticobasal Degeneration, Increased C9orf72 Expression and Disruption of Autophagy(Springer, 2019-11) Cali, Christopher P.; Patino, Maribel; Tai, Yee Kit; Ho, Wan Yun; McLean, Catriona A.; Morris, Christopher M.; Seeley, William W.; Miller, Bruce L.; Gaig, Carles; Vonsattel, Jean Paul G.; White, Charles L.; Roeber, Sigrun; Kretzschmar, Hans; Troncoso, Juan C.; Troakes, Claire; Gearing, Marla; Ghetti, Bernardino; Van Deerlin, Vivianna M.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Mok, Kin Y.; Ling, Helen; Dickson, Dennis W.; Schellenberg, Gerard D.; Ling, Shuo-Chien; Lee, Edward B.; Pathology and Laboratory Medicine, School of MedicineMicrosatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood. Several studies have identified intermediate repeats in Parkinson’s disease patients, but the association was not found in autopsy confirmed cases. We hypothesized that intermediate C9orf72 repeats are a genetic risk factor for corticobasal degeneration (CBD), a neurodegenerative disease that can be clinically similar to Parkinson’s but has distinct tau protein pathology. Indeed, intermediate C9orf72 repeats were significantly enriched in autopsy-proven CBD (n=354 cases, odds ratio=3.59, p-value=0.00024). While large C9orf72 repeat expansions are known to decrease C9orf72 expression, intermediate C9orf72 repeats result in increased C9orf72 expression in human brain tissue and CRISPR/cas9 knockin iPSC derived neural progenitor cells. In contrast to cases of FTD/ALS with large C9orf72 expansions, CBD with intermediate C9orf72 repeats was not associated with pathologic RNA foci or dipeptide repeat protein aggregates. Knock-in cells with intermediate repeats exhibit numerous changes in gene expression pathways relating to vesicle trafficking and autophagy. Additionally, overexpression of C9orf72 without the repeat expansion leads to defects in autophagy under nutrient starvation conditions. These results raise the possibility that therapeutic strategies to reduce C9orf72 expression may be beneficial for the treatment of CBD.Item Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease(American Chemical Society, 2022) Hubbard, Evan E.; Heil, Lilian R.; Merrihew, Gennifer E.; Chhatwal, Jasmeer P.; Farlow, Martin R.; McLean, Catriona A.; Ghetti, Bernardino; Newell, Kathy L.; Frosch, Matthew P.; Bateman, Randall J.; Larson, Eric B.; Keene, C. Dirk; Perrin, Richard J.; Montine, Thomas J.; MacCoss, Michael J.; Julian, Ryan R.; Pathology and Laboratory Medicine, School of MedicineOne of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer’s disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest, and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.Item Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy(Nature Publishing Group, 2015-06-16) Kouri, Naomi; Ross, Owen A.; Dombroski, Beth; Younkin, Curtis S.; Serie, Daniel J.; Soto-Ortolaza, Alexandra; Baker, Matthew; Finch, Ni Cole A.; Yoon, Hyejin; Kim, Jungsu; Fujioka, Shinsuke; McLean, Catriona A.; Ghetti, Bernardino; Spina, Salvatore; Cantwell, Laura B.; Farlow, Martin R.; Grafman, Jordan; Huey, Edward D.; Ryung Han, Mi; Beecher, Sherry; Geller, Evan T.; Kretzschmar, Hans A.; Roeber, Sigrun; Gearing, Marla; Juncos, Jorge L.; Vonsattel, Jean Paul G.; Van Deerlin, Vivianna M.; Grossman, Murray; Hurtig, Howard I.; Gross, Rachel G.; Arnold, Steven E.; Trojanowski, John Q.; Lee, Virginia M.; Wenning, Gregor K.; White, Charles L.; Höglinger, Günter U.; Müller, Ulrich; Devlin, Bernie; Golbe, Lawrence I.; Crook, Julia; Parisi, Joseph E.; Boeve, Bradley F.; Josephs, Keith A.; Wszolek, Zbigniew K.; Uitti, Ryan J.; Graff-Radford, Neill R.; Litvan, Irene; Younkin, Steven G.; Wang, Li-San; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hakonarsen, Hakon; Schellenberg, Gerard D.; Dickson, Dennis W.; Department of Pathology & Laboratory Medicine, IU School of MedicineCorticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10−8), and 2p22 at SOS1 (rs963731; P=1.76 × 10−7). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10−7) and MAPT H1c (17q21; rs242557; P=7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein).