- Browse by Author
Browsing by Author "McKee, Shane"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correction to: De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome(Biomed Central, 2019-03-25) Vetrini, Francesco; McKee, Shane; Rosenfeld, Jill A.; Suri, Mohnish; Lewis, Andrea M.; Nugent, Kimberly Margaret; Roeder, Elizabeth; Littlejohn, Rebecca O.; Holder, Sue; Zhu, Wenmiao; Alaimo, Joseph T.; Graham, Brett; Harris, Jill M.; Gibson, James B.; Pastore, Matthew; McBride, Kim L.; Komara, Makanko; Al-Gazali, Lihadh; Al Shamsi, Aisha; Fanning, Elizabeth A.; Wierenga, Klaas J.; Scott, Daryl A.; Ben-Neriah, Ziva; Meiner, Vardiella; Cassuto, Hanoch; Elpeleg, Orly; Lloyd Holder Jr, J.; Burrage, Lindsay C.; Seaver, Laurie H.; Van Maldergem, Lionel; Mahida, Sonal; Soul, Janet S.; Marlatt, Margaret; Matyakhina, Ludmila; Vogt, Julie; Gold, June-Anne; Park, Soo-Mi; Varghese, Vinod; Lampe, Anne K.; Kumar, Ajith; Lees, Melissa; Holder-Espinasse, Muriel; McConnell, Vivienne; Bernhard, Birgitta; Blair, Ed; Harrison, Victoria; Muzny, Donna M.; Gibbs, Richard A.; Elsea, Sarah H.; Posey, Jennifer E.; Bi, Weimin; Lalani, Seema; Xia, Fan; Yang, Yaping; Eng, Christine M.; Lupski, James R.; Liu, Pengfei; Medical and Molecular Genetics, School of MedicineIt was highlighted that the original article [1] contained a typographical error in the Results section. Subject 17 was incorrectly cited as Subject 1. This Correction article shows the revised statement. The original article has been updated.Item Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations(Wiley, 2022) Balachandar, Srimmitha; Graves, Tamara J.; Shimonty, Anika; Kerr, Katie; Kilner, Jill; Xiao, Sihao; Slade, Richard; Sroya, Manveer; Alikian, Mary; Curetean, Emanuel; Thomas, Ellen; McConnell, Vivienne P. M.; McKee, Shane; Boardman-Pretty, Freya; Devereau, Andrew; Fowler, Tom A.; Caulfield, Mark J.; Alton, Eric W.; Ferguson, Teena; Redhead, Julian; McKnight, Amy J.; Thomas, Geraldine A.; Genomics England Research Consortium; Aldred, Micheala A.; Shovlin, Claire L.; Medicine, School of MedicineHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.Item De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome(BMC, 2019-02-28) Vetrini, Francesco; McKee, Shane; Rosenfeld, Jill A.; Suri, Mohnish; Lewis, Andrea M.; Nugent, Kimberly Margaret; Roeder, Elizabeth; Littlejohn, Rebecca O.; Holder, Sue; Zhu, Wenmiao; Alaimo, Joseph T.; Graham, Brett; Harris, Jill M.; Gibson, James B.; Pastore, Matthew; McBride, Kim L.; Komara, Makanko; Al-Gazali, Lihadh; Al Shamsi, Aisha; Fanning, Elizabeth A.; Wierenga, Klaas J.; Scott, Daryl A.; Ben-Neriah, Ziva; Meiner, Vardiella; Cassuto, Hanoch; Elpeleg, Orly; Holder, J. Lloyd, Jr.; Burrage, Lindsay C.; Seaver, Laurie H.; Van Maldergem, Lionel; Mahida, Sonal; Soul, Janet S.; Marlatt, Margaret; Matyakhina, Ludmila; Vogt, Julie; Gold, June-Anne; Park, Soo-Mi; Varghese, Vinod; Lampe, Anne K.; Kumar, Ajith; Lees, Melissa; Holder-Espinasse, Muriel; McConnell, Vivienne; Bernhard, Birgitta; Blair, Ed; Harrison, Victoria; The DDD study; Muzny, Donna M.; Gibbs, Richard A.; Elsea, Sarah H.; Posey, Jennifer E.; Bi, Weimin; Lalani, Seema; Xia, Fan; Yang, Yaping; Eng, Christine M.; Lupski, James R.; Liu, Pengfei; Medical and Molecular Genetics, School of MedicineBACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.Item Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia(Elsevier, 2021-05) Muir, Alison M.; Gardner, Jennifer F.; van Jaarsveld, Richard H.; de Lange, Iris M.; van der Smagt, Jasper J.; Wilson, Golder N.; Dubbs, Holly; Goldberg, Ethan M.; Zitano, Lia; Bupp, Caleb; Martinez, Jose; Srour, Myriam; Accogli, Andrea; Alhakeem, Afnan; Meltzer, Meira; Gropman, Andrea; Brewer, Carole; Caswell, Richard C.; Montgomery, Tara; McKenna, Caoimhe; McKee, Shane; Powell, Corinna; Vasudevan, Pradeep C.; Brady, Angela F.; Joss, Shelagh; Tysoe, Carolyn; Noh, Grace; Tarnopolsky, Mark; Brady, Lauren; Zafar, Muhammad; Schrier Vergano, Samantha A.; Murray, Brianna; Sawyer, Lindsey; Hainline, Bryan E.; Sapp, Katherine; DeMarzo, Danielle; Huismann, Darcy J.; Wentzensen, Ingrid M.; Schnur, Rhonda E.; Monaghan, Kristin G.; Juusola, Jane; Rhodes, Lindsay; Dobyns, William B.; Lecoquierre, Francois; Goldenberg, Alice; Polster, Tilman; Axer-Schaefer, Susanne; Platzer, Konrad; Klöckner, Chiara; Hoffman, Trevor L.; MacArthur, Daniel G.; O'Leary, Melanie C.; VanNoy, Grace E.; England, Eleina; Varghese, Vinod C.; Mefford, Heather C.; Medical and Molecular Genetics, School of MedicinePurpose: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. Methods: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. Results: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. Conclusion: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.