- Browse by Author
Browsing by Author "McGeown, Jack"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Anti-tumor activity and mechanistic characterization of APE1/Ref-1 inhibitors in bladder cancer(American Association for Cancer Research, 2019-08-14) Fishel, Melissa L.; Xia, Hanyu; McGeown, Jack; McIlwain, David W.; Elbanna, May; Craft, Ariel A.; Kaimakliotis, Hristos Z.; Sandusky, George E.; Zhang, Chi; Pili, Roberto; Kelley, Mark R.; Jerde, Travis J.; Pharmacology and Toxicology, School of MedicineBladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments. Therefore, identification of innovative molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression is associated with shorter patient survival time in many cancer types. In this study, we found high APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of APE1/Ref-1 redox signaling using APE1/Ref-1-specific inhibitors attenuates bladder cancer cell proliferation in monolayer, in three-dimensional cultures, and in vivo. This inhibition corresponds with an increase in apoptosis and decreased transcriptional activity of NF-κB and STAT3, transcription factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of-care chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies. SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder cancer growth and provides compelling preclinical data using selective redox activity inhibitors of APE1/Ref-1 in vitro and in vivo.Item Combined inhibition of Ref‐1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co‐culture models(Wiley, 2021-01) Caston, Rachel A.; Shah, Fenil; Starcher, Colton L.; Wireman, Randall; Babb, Olivia; Grimard, Michelle; McGeown, Jack; Armstrong, Lee; Tong, Yan; Pili, Roberto; Rupert, Joseph; Zimmers, Teresa A.; Elmi, Adily N.; Pollok, Karen E.; Motea, Edward A.; Kelley, Mark R.; Fishel, Melissa L.; Pediatrics, School of MedicineWith a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref‐1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF‐κB, AP‐1, HIF‐1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref‐1 (redox factor‐1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref‐1 in multiple cancer types. Using targeted small molecule inhibitors, Ref‐1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer‐associated fibroblasts (CAF) response to determine the synergy of Ref‐1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref‐1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.