- Browse by Author
Browsing by Author "McDuffie, Marcia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Deletion of 12/15-Lipoxygenase Alters Macrophage and Islet Function in NOD-Alox15null Mice, Leading to Protection against Type 1 Diabetes Development(Public Library of Science, 2013) Green-Mitchell, Shamina M.; Tersey, Sarah A.; Cole, Banumathi K.; Ma, Kaiwen; Kuhn, Norine S.; Duong Cunningham, Tina; Maybee, Nelly A.; Chakrabarti, Swarup K.; McDuffie, Marcia; Taylor-Fishwick, David A.; Mirmira, Raghavendra G.; Nadler, Jerry L.; Morris, Margaret A.; Pediatrics, School of MedicineAims: Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. Methods: 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. Results: 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. Conclusions: These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.Item Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes(Elsevier, 2022) Piñeros, Annie R.; Kulkarni, Abhishek; Gao, Hongyu; Orr, Kara S.; Glenn, Lindsey; Huang, Fei; Liu, Yunlong; Gannon, Maureen; Syed, Farooq; Wu, Wenting; Anderson, Cara M.; Evans-Molina, Carmella; McDuffie, Marcia; Nadler, Jerry L.; Morris, Margaret A.; Mirmira, Raghavendra G.; Tersey, Sarah A.; Pediatrics, School of MedicineType 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.