- Browse by Author
Browsing by Author "McClintick, Jeanette"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism(Springer Nature, 2019-02-14) Kapoor, Manav; Wang, Jen-Chyong; Farris, Sean P.; Liu, Yunlong; McClintick, Jeanette; Gupta, Ishaan; Meyers, Jacquelyn L.; Bertelsen, Sarah; Chao, Michael; Nurnberger, John; Tischfield, Jay; Harari, Oscar; Zeran, Li; Hesselbrock, Victor; Bauer, Lance; Raj, Towfique; Porjesz, Bernice; Agrawal, Arpana; Foroud, Tatiana; Edenberg, Howard J.; Mayfield, R. Dayne; Goate, Alison; Medical and Molecular Genetics, School of MedicineAlcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.Item Circulating Uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel(American Association for the Advancement of Science, 2019-10) LaFavers, Kaice A.; Macedo, Etienne; Garimella, Pranav S.; Lima, Camila; Khan, Shehnaz; Myslinski, Jered; McClintick, Jeanette; Witzmann, Frank A.; Winfree, Seth; Phillips, Carrie; Hato, Takashi; Dagher, Pierre; Wu, Xue-Ru; El-Achkar, Tarek M.; Micanovic, Radmila; Medicine, School of MedicineHigh serum concentrations of kidney-derived protein uromodulin (Tamm-Horsfall protein or THP) have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI, and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with post-surgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model, mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity and our findings might help to explain how circulating THP deficiency is linked with poor outcomes and increased mortality.Item Endotoxin Preconditioning Reprograms S1 Tubules and Macrophages to Protect the Kidney(American Society of Nephrology, 2018-01) Hato, Takashi; Zollman, Amy; Plotkin, Zoya; El-Achkar, Tarek M.; Maier, Bernhard F.; Pay, S. Louise; Dube, Shataakshi; Cabral, Pablo; Yoshimoto, Momoko; McClintick, Jeanette; Dagher, Pierre C.; Medicine, School of MedicinePreconditioning with a low dose of endotoxin confers unparalleled protection against otherwise lethal models of sepsis. The mechanisms of preconditioning have been investigated extensively in isolated immune cells such as macrophages. However, the role of tissue in mediating the protective response generated by preconditioning remains unknown. Here, using the kidney as a model organ, we investigated cell type-specific responses to preconditioning. Compared with preadministration of vehicle, endotoxin preconditioning in the cecal ligation and puncture mouse model of sepsis led to significantly enhanced survival and reduced bacterial load in several organs. Furthermore, endotoxin preconditioning reduced serum levels of proinflammatory cytokines, upregulated molecular pathways involved in phagocytosis, and prevented the renal function decline and injury induced in mice by a toxic dose of endotoxin. The protective phenotype involved the clustering of macrophages around S1 segments of proximal tubules, and full renal protection required both macrophages and renal tubular cells. Using unbiased S1 transcriptomic and tissue metabolomic approaches, we identified multiple protective molecules that were operative in preconditioned animals, including molecules involved in antibacterial defense, redox balance, and tissue healing. We conclude that preconditioning reprograms macrophages and tubules to generate a protective environment, in which tissue health is preserved and immunity is controlled yet effective. Endotoxin preconditioning can thus be used as a discovery platform, and understanding the role and participation of both tissue and macrophages will help refine targeted therapies for sepsis.Item Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings(Elsevier, 2016) Bell, Richard L.; Hauser, Sheketha R.; McClintick, Jeanette; Rahman, Shafiqur; Edenberg, Howard J.; Szumlinski, Karen K.; McBride, William J.; Department of Psychiatry, IU School of MedicineHerein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.Item Expand your research: Next-Gen Sequencing, Genotyping, Gene Expression, and Epigenetics at the Center for Medical Genomics at IUSM(Office of the Vice Chancellor for Research, 2014-04-11) Xuei, Xiaoling; McClintick, Jeanette; Liu, Yunlong; Edenberg, Howard JThe Center for Medical Genomics (CMG) provides Indiana researchers with next-generation sequencing, SNP genotyping, gene expression and epigenetics. We provide expertise in experimental design, carry out the procedures, and assist with analyses and interpretation. These state-of-the-art technologies have enabled a large number of grants to be funded over the years, and have resulted in a very large number of publications. Our next-generation sequencing technology includes SOLiD5500xl, Ion Proton and Ion Torrent PGM (Personal Genome Machine). This set of instruments covers a wide range of next-generation sequencing capabilities from small bacterial genomes to the whole human genome, transcriptome (total RNA), small RNA, targeted DNA fragments, exome, ChIP-seq, and methyl-seq. We have generated sequencing data for 52 projects over the past two years. Our SNP genotyping facility, using the Sequenom MassArray platform, specializes in targeted genotyping of 20-30 SNPs per assay and is an excellent choice for candidate gene studies and for following up results from GWAS and next-generation sequencing. It has been a central part of several large, multi-site collaborative genetic studies, including Genetics of Alcoholism (COGA), bipolar disorder, osteoporosis and hypertension, as well as many smaller projects; it is most efficient for sets of approximately 370 samples. We have produced more than 20 million targeted SNP genotypes to date. This platform is also capable of measuring allele-specific gene expression, and targeted quantitative DNA methylation for epigenetics study. For many projects, microarrays offer a good alternative to next-generation sequencing for measuring gene expression. We use Affymetrix GeneChip microarrays, capable of measuring expression of nearly all genes in humans (and all exons within them), rats, mice and most model organisms, and can measure expression of miRNAs. We can also use RNA extracted from FFPE samples. We have carried out more than 6,700 GeneChip hybridizations to date in support of many different projects. The CMG partners with the Center for Computational Biology and Bioinformatics for data analysis. We are recognized as a Core Facility of the Indiana CTSI and available to faculty not only from IU and IUPUI, but also from Purdue and Notre Dame Universities.Item Expand your research: Next-Gen Sequencing, Genotyping, Gene Expression, and Epigenetics at the Center for Medical Genomics at IUSM(Office of the Vice Chancellor for Research, 2015-04-17) Xuei, Xiaoling; McClintick, Jeanette; Liu, Yunlong; Edenberg, Howard J.The Center for Medical Genomics (CMG) provides Indiana researchers with next-generation sequencing, SNP genotyping, gene expression and epigenetics. We provide expertise in experimental design, carry out the procedures, and assist with analyses and interpretation. These state-of-the-art technologies have enabled a large number of grants to be funded over the years, and have resulted in a very large number of publications. Our next-generation sequencing technology includes SOLiD5500xl, Ion Proton and Ion Torrent PGM (Personal Genome Machine). This set of instruments covers a wide range of nextgeneration sequencing capabilities from small bacterial genomes to the whole human genome, transcriptome (total RNA), small RNA, targeted DNA fragments, exome, ChIP-seq, and methylseq, with high sequencing accuracy. We have generated sequencing data for 74 projects over the past two-three years. Our SNP genotyping facility, using the Sequenom MassArray platform, specializes in targeted genotyping of 20-30 SNPs per assay and is an excellent choice for candidate gene studies and for following up results from GWAS and next-generation sequencing. It has been a central part of several large, multi-site collaborative genetic studies, including Genetics of Alcoholism (COGA), bipolar disorder, osteoporosis and hypertension, as well as many smaller projects; it is most efficient for sets of approximately 370 samples. We have produced more than 20 million targeted SNP genotypes to date. This platform is also capable of measuring allele-specific gene expression, and targeted quantitative DNA methylation for epigenetics study. For many projects, microarrays offer a good alternative to next-generation sequencing for measuring gene expression. We use Affymetrix GeneChip microarrays, capable of measuring expression of nearly all genes in humans (and all exons within them), rats, mice and most model organisms, and can measure expression of miRNAs. We can also use RNA extracted from FFPE samples. We have carried out more than 6,700 GeneChip hybridizations to date in support of many different projects. The CMG partners with the Center for Computational Biology and Bioinformatics for data analysis. We are recognized as a Core Facility of the Indiana CTSI and available to faculty not only from IU and IUPUI, but also from Purdue and Notre Dame Universities.Item A Genome Wide Association Study of Interhemispheric Theta EEG Coherence: Implications for Neural Connectivity and Alcohol Use Behavior(Springer Nature, 2021) Meyers, Jacquelyn L.; Zhang, Jian; Chorlian, David B.; Pandey, Ashwini K.; Kamarajan, Chella; Wang, Jen-Chyong; Wetherill, Leah; Lai, Dongbing; Chao, Michael; Chan, Grace; Kinreich, Sivan; Kapoor, Manav; Bertelsen, Sarah; McClintick, Jeanette; Bauer, Lance; Hesselbrock, Victor; Kuperman, Samuel; Kramer, John; Salvatore, Jessica E.; Dick, Danielle M.; Agrawal, Arpana; Foroud, Tatiana; Edenberg, Howard J.; Goate, Alison; Porjesz, Bernice; Medical and Molecular Genetics, School of MedicineAberrant connectivity of large-scale brain networks has been observed among individuals with alcohol use disorders (AUDs) as well as in those at risk, suggesting deficits in neural communication between brain regions in the liability to develop AUD. Electroencephalographical (EEG) coherence, which measures the degree of synchrony between brain regions, may be a useful measure of connectivity patterns in neural networks for studying the genetics of AUD. In 8810 individuals (6644 of European and 2166 of African ancestry) from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Multi-Trait Analyses of genome-wide association studies (MTAG) on parietal resting-state theta (3-7 Hz) EEG coherence, which previously have been associated with AUD. We also examined developmental effects of GWAS findings on trajectories of neural connectivity in a longitudinal subsample of 2316 adolescent/young adult offspring from COGA families (ages 12-30) and examined the functional and clinical significance of GWAS variants. Six correlated single nucleotide polymorphisms located in a brain-expressed lincRNA (ENSG00000266213) on chromosome 18q23 were associated with posterior interhemispheric low theta EEG coherence (3-5 Hz). These same variants were also associated with alcohol use behavior and posterior corpus callosum volume, both in a subset of COGA and in the UK Biobank. Analyses in the subsample of COGA offspring indicated that the association of rs12954372 with low theta EEG coherence occurred only in females, most prominently between ages 25 and 30 (p < 2 × 10-9). Converging data provide support for the role of genetic variants on chromosome 18q23 in regulating neural connectivity and alcohol use behavior, potentially via dysregulated myelination. While findings were less robust, genome-wide associations were also observed with rs151174000 and parieto-frontal low theta coherence, rs14429078 and parieto-occipital interhemispheric high theta coherence, and rs116445911 with centro-parietal low theta coherence. These novel genetic findings highlight the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.Item Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4)(Springer-Verlag, 2015-07) Franklin, Kelle M.; Hauser, Sheketha R.; Lasek, Amy W.; McClintick, Jeanette; Ding, Zheng-Ming; McBride, William J.; Bell, Richard L.; Department of Psychiatry, IU School of MedicineRATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake.Item Targeting fibroblast growth factor 23-responsive pathways uncovers controlling genes in kidney mineral metabolism(Elsevier, 2021) Ni, Pu; Clinkenbeard, Erica L.; Noonan, Megan L.; Richardville, Joseph M.; McClintick, Jeanette; Hato, Takashi; Janosevic, Danielle; Cheng, Ying-Hua; El-Achkar, Tarek M.; Eadon, Michael T.; Dagher, Pierre C.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineFibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice. Mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of Egr1, and increased Cyp24a1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGF-receptor expression mostly in the proximal tubule, and alpha-Klotho expression in proximal and distal tubule segments. In alpha-Klotho-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased Egr1 and Cyp24a1 with correction of basally elevated Cyp27b1. Additionally, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased Cyp27b1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 cells with stable alpha-Klotho expression, FGF23 and HBEGF increased CYP24A1 mRNA expression. HBEGF, but not FGF23 bioactivity was blocked with EGF-receptor inhibition. Thus, our findings support that the paracrine/autocrine factor HBEGF could play novel roles in controlling genes downstream of FGF23 via targeting common signaling pathways.Item Toxoplasma gondii Lysine Acetyltransferase GCN5-A Functions in the Cellular Response to Alkaline Stress and Expression of Cyst Genes(Public Library of Science, 2010-12-16) Naguleswaran, Arunasalam; Elias, Eliana V.; McClintick, Jeanette; Edenberg, Howard J.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineParasitic protozoa such as the apicomplexan Toxoplasma gondii progress through their life cycle in response to stimuli in the environment or host organism. Very little is known about how proliferating tachyzoites reprogram their expressed genome in response to stresses that prompt development into latent bradyzoite cysts. We have previously linked histone acetylation with the expression of stage-specific genes, but the factors involved remain to be determined. We sought to determine if GCN5, which operates as a transcriptional co-activator by virtue of its histone acetyltransferase (HAT) activity, contributed to stress-induced changes in gene expression in Toxoplasma. In contrast to other lower eukaryotes, Toxoplasma has duplicated its GCN5 lysine acetyltransferase (KAT). Disruption of the gene encoding for TgGCN5-A in type I RH strain did not produce a severe phenotype under normal culture conditions, but here we show that the TgGCN5-A null mutant is deficient in responding to alkaline pH, a common stress used to induce bradyzoite differentiation in vitro. We performed a genome-wide analysis of the Toxoplasma transcriptional response to alkaline pH stress, finding that parasites deleted for TgGCN5-A fail to up-regulate 74% of the stress response genes that are induced 2-fold or more in wild-type. Using chromatin immunoprecipitation, we verify an enrichment of TgGCN5-A at the upstream regions of genes activated by alkaline pH exposure. The TgGCN5-A knockout is also incapable of up-regulating key marker genes expressed during development of the latent cyst form, and is impaired in its ability to recover from alkaline stress. Complementation of the TgGCN5-A knockout restores the expression of these stress-induced genes and reverses the stress recovery defect. These results establish TgGCN5-A as a major contributor to the alkaline stress response in RH strain Toxoplasma.