- Browse by Author
Browsing by Author "McCarthy, Thomas W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease(MDPI, 2022-03-30) Collins, Kimberly S.; Eadon, Michael T.; Cheng, Ying-Hua; Barwinska, Daria; Ferreira, Ricardo Melo; McCarthy, Thomas W.; Janosevic, Danielle; Syed, Farooq; Maier, Bernhard; El-Achkar, Tarek M.; Kelly, Katherine J.; Phillips, Carrie L.; Hato, Takashi; Sutton, Timothy A.; Dagher, Pierre C.; Medicine, School of MedicineDiabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography-mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.Item The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline(eLife Sciences, 2021-01-15) Janosevic, Danielle; Myslinski, Jered; McCarthy, Thomas W.; Zollman, Amy; Syed, Farooq; Xuei, Xiaoling; Gao, Hongyu; Liu, Yun-Long; Collins, Kimberly S.; Cheng, Ying-Hua; Winfree, Seth; El-Achkar, Tarek M.; Maier, Bernhard; Ferreira, Ricardo Melo; Eadon, Michael T.; Hato, Takashi; Dagher, Pierre C.; Medicine, School of MedicineSepsis is a dynamic state that progresses at variable rates and has life-threatening consequences. Staging patients along the sepsis timeline requires a thorough knowledge of the evolution of cellular and molecular events at the tissue level. Here, we investigated the kidney, an organ central to the pathophysiology of sepsis. Single-cell RNA-sequencing in a murine endotoxemia model revealed the involvement of various cell populations to be temporally organized and highly orchestrated. Endothelial and stromal cells were the first responders. At later time points, epithelial cells upregulated immune-related pathways while concomitantly downregulating physiological functions such as solute homeostasis. Sixteen hours after endotoxin, there was global cell-cell communication failure and organ shutdown. Despite this apparent organ paralysis, upstream regulatory analysis showed significant activity in pathways involved in healing and recovery. This rigorous spatial and temporal definition of murine endotoxemia will uncover precise biomarkers and targets that can help stage and treat human sepsis.