- Browse by Author
Browsing by Author "McCabe, Matthew F."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques(2013-06) Wang, Lixin; Niu, Shuli; Good, Stephen P.; Soderberg, Keir; McCabe, Matthew F.; Sherry, Rebecca A.; Luo, Yiqi; Zhou, Xuhui; Xia, Jianyang; Caylor, Kelly K.The proportion of transpiration (T) in total evapotranspiration (ET) is an important parameter that provides insight into the degree of biological influence on the hydrological cycles. Studies addressing the effects of climatic warming on the ecosystem total water balance are scarce, and measured warming effects on the T/ET ratio in field experiments have not been seen in the literature. In this study, we quantified T/ET ratios under ambient and warming treatments in a grassland ecosystem using a stable isotope approach. The measurements were made at a long-term grassland warming site in Oklahoma during the May–June peak growing season of 2011. Chamber-based methods were used to estimate the δ2H isotopic composition of evaporation (δE), transpiration (δT) and the aggregated evapotranspiration (δET). A modified commercial conifer leaf chamber was used for δT, a modified commercial soil chamber was used for δE and a custom built chamber was used for δET. The δE, δET and δT were quantified using both the Keeling plot approach and a mass balance method, with the Craig–Gordon model approach also used to calculate δE. Multiple methods demonstrated no significant difference between control and warming plots for both δET and δT. Though the chamber-based estimates and the Craig–Gordon results diverged by about 12‰, all methods showed that δE was more depleted in the warming plots. This decrease in δE indicates that the evaporation flux as a percentage of total water flux necessarily decreased for δET to remain constant, which was confirmed by field observations. The T/ET ratio in the control treatment was 0.65 or 0.77 and the ratio found in the warming treatment was 0.83 or 0.86, based on the chamber method and the Craig–Gordon approach. Sensitivity analysis of the Craig–Gordon model demonstrates that the warming-induced decrease in soil liquid water isotopic composition is the major factor responsible for the observed δE depletion and the temperature dependent equilibrium effects are minor. Multiple lines of evidence indicate that the increased T/ET ratio under warming is caused mainly by reduced evaporation.Item Elevated CO2 as a driver of global dryland greening.(NPG, 2016) Lu, Xuefei; Wang, Lixin; McCabe, Matthew F.; Department of Earth Science, School of ScienceWhile recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.Item Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts(Elsevier, 2018-06) Liu, Yi Y.; van Dijk, Albert I. J. M.; Miralles, Diego G.; McCabe, Matthew F.; Evans, Jason P.; de Jeu, Richard A. M.; Gentine, Pierre; Huete, Alfredo; Parinussa, Robert M.; Wang, Lixin; Guan, Kaiyu; Berry, Joe; Restrepo-Coupe, Natalia; Earth Sciences, School of ScienceUnprecedented droughts hit southern Amazonia in 2005 and 2010, causing a sharp increase in tree mortality and carbon loss. To better predict the rainforest's response to future droughts, it is necessary to understand its behavior during past events. Satellite observations provide a practical source of continuous observations of Amazonian forest. Here we used a passive microwave-based vegetation water content record (i.e., vegetation optical depth, VOD), together with multiple hydrometeorological observations as well as conventional satellite vegetation measures, to investigate the rainforest canopy dynamics during the 2005 and 2010 droughts. During the onset of droughts in the wet-to-dry season (May–July) of both years, we found large-scale positive anomalies in VOD, leaf area index (LAI) and enhanced vegetation index (EVI) over the southern Amazonia. These observations are very likely caused by enhanced canopy growth. Concurrent below-average rainfall and above-average radiation during the wet-to-dry season can be interpreted as an early arrival of normal dry season conditions, leading to enhanced new leaf development and ecosystem photosynthesis, as supported by field observations. Our results suggest that further rainfall deficit into the subsequent dry season caused water and heat stress during the peak of 2005 and 2010 droughts (August–October) that exceeded the tolerance limits of the rainforest, leading to widespread negative VOD anomalies over the southern Amazonia. Significant VOD anomalies were observed mainly over the western part in 2005 and mainly over central and eastern parts in 2010. The total area with significant negative VOD anomalies was comparable between these two drought years, though the average magnitude of significant negative VOD anomalies was greater in 2005. This finding broadly agrees with the field observations indicating that the reduction in biomass carbon uptake was stronger in 2005 than 2010. The enhanced canopy growth preceding drought-induced senescence should be taken into account when interpreting the ecological impacts of Amazonian droughts.Item Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future(Elsevier, 2021-04) Jiao, Wenzhe; Wang, Lixin; McCabe, Matthew F.; Earth Sciences, School of ScienceSatellite based remote sensing offers one of the few approaches able to monitor the spatial and temporal development of regional to continental scale droughts. A unique element of remote sensing platforms is their multi-sensor capability, which enhances the capacity for characterizing drought from a variety of perspectives. Such aspects include monitoring drought influences on vegetation and hydrological responses, as well as assessing sectoral impacts (e.g., agriculture). With advances in remote sensing systems along with an increasing range of platforms available for analysis, this contribution provides a timely and systematic review of multi-sensor remote sensing drought studies, with a particular focus on drought related datasets, drought related phenomena and mechanisms, and drought modeling. To explore this topic, we first present a comprehensive summary of large-scale remote sensing datasets that can be used for multi-sensor drought studies. We then review the role of multi-sensor remote sensing for exploring key drought related phenomena and mechanisms, including vegetation responses to drought, land-atmospheric feedbacks during drought, drought-induced tree mortality, drought-related ecosystem fires, post-drought recovery and legacy effects, flash drought, as well as drought trends under climate change. A summary of recent modeling advances towards developing integrated multi-sensor remote sensing drought indices is also provided. We conclude that leveraging multi-sensor remote sensing provides unique benefits for regional to global drought studies, particularly in: 1) revealing the complex drought impact mechanisms on ecosystem components; 2) providing continuous long-term drought related information at large scales; 3) presenting real-time drought information with high spatiotemporal resolution; 4) providing multiple lines of evidence of drought monitoring to improve modeling and prediction robustness; and 5) improving the accuracy of drought monitoring and assessment efforts. We specifically highlight that more mechanism-oriented drought studies that leverage a combination of sensors and techniques (e.g., optical, microwave, hyperspectral, LiDAR, and constellations) across a range of spatiotemporal scales are needed in order to progress and advance our understanding, characterization and description of drought in the future.Item Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system(Elsevier, 2017-01) Lu, Xuefei; Liang, Liyin L.; Wang, Lixin; Jenerette, G. Darrel; McCabe, Matthew F.; Grantz, David A.; Department of Earth Sciences, School of ScienceAgricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δE), transpiration (T, δT) and ET (δET) to partition the total water flux. Due to the extreme heat and aridity, δE and δT were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δE, δT, and δET increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.Item Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment(2017) Parkes, Stephen D.; McCabe, Matthew F.; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G.; Strauss, Josiah; Element, Adrian; Department of Earth Sciences, School of ScienceThe stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (dv = δ2H − 8 × δ18O) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the D-excess in water vapour (dv). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (dET) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime dv values. The low dET observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime dv and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime dv variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate dET can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface dv. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using dv to study moisture recycling and during extended dry periods with weak moisture recycling may act as a tracer of the relative humidity at the oceanic moisture source.Item Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements(Elsevier, 2015-04) Cai, Mick Y.; Wang, Lixin; Parkes, Stephen D.; McCabe, Matthew F.; Evans, Jason P.; Griffiths, Alan D.The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (∼1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior.