- Browse by Author
Browsing by Author "Masood, Sehban"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 4009 Magneto-electric nanoparticles (MENs) cobalt ferrite-barrium titanate (CoFe2O4–BaTiO3) for non-invasive neuromodulation(Cambridge University Press, 2020-07-29) Nguyen, Tyler; Vriesman, Zoe; Andrews, Peter; Masood, Sehban; Stewart, M.; Khizroev, Sakhrat; Jin, Xiaoming; Anesthesia, School of MedicineOBJECTIVES/GOALS: Our goal is to develop a non-invasive stimulation technique using magneto-electric nanoparticles (MENs) for inducing and enhancing neuronal activity with high spatial and temporal resolutions and minimal toxicity, which can potentially be used as a more effective approach to brain stimulation. METHODS/STUDY POPULATION: MENs compose of core-shell structures that are attracted to strong external magnetic field (~5000 Gauss) but produces electric currents with weaker magnetic field (~450 Gauss). MENs were IV treated into mice and drawn to the brain cortex with a strong magnetic field. We then stimulate MENs with a weaker magnetic field via electro magnet. With two photon calcium imaging, we investigated both the temporal and spatial effects of MENs on neuronal activity both in vivo and in vitro. We performed mesoscopic whole brain calcium imaging on awake animal to assess the MENs effects. Furthermore, we investigated the temporal profile of MENs in the vasculatures post-treatment and its toxicities to CNS. RESULTS/ANTICIPATED RESULTS: MENs were successfully localized to target cortical regions within 30 minutes of magnetic application. After wirelessly applying ~450 G magnetic field between 10-20 Hz, we observed a dramatic increase of calcium signals (i.e. neuronal excitability) both in vitro cultured neurons and in vivo treated animals. Whole brain imaging of awake mice showed a focal increase in calcium signals at the area where MENs localized and the signals spread to regions further away. We also found MENs stimulatory effects lasted up to 24 hours post treatment. MEN stimulation increases c-Fos expression but resulted in no inflammatory changes, up to one week, by assessing microglial or astrocytes activations. DISCUSSION/SIGNIFICANCE OF IMPACT: Our study shows, through controlling the applied magnetic field, MENs can be focally delivered to specific cortical regions with high efficacy and wirelessly activated neurons with high spatial and temporal resolution. This method shows promising potential to be a new non-invasive brain modulation approach disease studies and treatments.Item In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles(Springer, 2021) Nguyen, Tyler; Gao, Jianhua; Wang, Ping; Nagesetti, Abhignyan; Andrews, Peter; Masood, Sehban; Vriesman, Zoe; Liang, Ping; Khizroev, Sakhrat; Jin, Xiaoming; Anatomy, Cell Biology and Physiology, School of MedicineWireless and precise stimulation of deep brain structures could have important applications to study intact brain circuits and treat neurological disorders. Herein, we report that magnetoelectric nanoparticles (MENs) can be guided to a targeted brain region to stimulate brain activity with a magnetic field. We demonstrated the nanoparticles' capability to reliably evoke fast neuronal responses in cortical slices ex vivo. After fluorescently labeled MENs were intravenously injected and delivered to a targeted brain region by applying a magnetic field gradient, a magnetic field of low intensity (350-450 Oe) applied to the mouse head reliably evoked cortical activities, as revealed by two-photon and mesoscopic imaging of calcium signals and by an increased number of c-Fos expressing cells after stimulation. Neither brain delivery of MENs nor the magnetic stimulation caused significant increases in astrocytes and microglia. Thus, MENs could enable a non-invasive and contactless deep brain stimulation without the need of genetic manipulation.