- Browse by Author
Browsing by Author "Martins, Victor M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chlorhexidine-modified nanotubes and their effects on the polymerization and bonding performance of a dental adhesive(Elsevier, 2020-05) Kalagi, Sara; Feitosa, Sabrina A.; Münchow, Eliseu A.; Martins, Victor M.; Karczewski, Ashley E.; Cook, N. Blaine; Diefenderfer, Kim; Eckert, George J.; Geraldeli, Saulo; Bottino, Marco C.; Cariology, Operative Dentistry and Dental Public Health, School of DentistryObjectives: The purpose of this study was to synthesize chlorhexidine (CHX)-encapsulated aluminosilicate clay nanotubes (Halloysite®, HNTs) and to incorporate them into the primer/adhesive components of an etch-and-rinse adhesive system (SBMP; Scotchbond Multipurpose, 3M ESPE) and to test their effects on degree of conversion, viscosity, immediate and long-term bonding to dentin. Methods: CHX-modified HNTs were synthesized using 10% or 20% CHX solutions. The primer and the adhesive components of SBMP were incorporated with 15wt.% of the CHX-encapsulated HNTs. Degree of conversion (DC) and viscosity analyses were performed to characterize the modified primers/adhesives. For bond strength testing, acid-etched dentin was treated with one of the following: SBMP (control); 0.2%CHX solution before SBMP; CHX-modified primers+SBMP adhesive; SBMP primer+CHX-modified adhesives; and SBMP primer+CHX-free HNT-modified adhesive. The microtensile bond strength test was performed after immediate (24h) and long-term (6 months) of water storage. Data were analyzed using ANOVA and Tukey (α=5%) and the Weibull analysis. Results: DC was greater for the CHX-free HNT-modified adhesive, whereas the other experimental adhesives showed similar DC as compared with the control. Primers were less viscous than the adhesives, without significant differences within the respective materials. At 24h, all groups showed similar bonding performance and structural reliability; whereas at the 6-month period, groups treated with the 0.2%CHX solution prior bonding or with the CHX-modified primers resulted in greater bond strength than the control and superior reliability. Significance: The modification of a primer or adhesive with CHX-encapsulated HNTs was an advantageous approach that did not impair the polymerization, viscosity and bonding performance of the materials, showing a promising long-term effect on resin-dentin bonds.Item Effect of a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant on oral biofilm(J-STAGE, 2021-05) Feitosa, Sabrina; Carreiro, Adriana F. P.; Martins, Victor M.; Platt, Jeffrey A.; Duarte, Simone; Biomedical Sciences and Comprehensive Care, School of DentistryThe purpose of this study was to characterize a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant for biofilm development prevention. HS (commercial control); HNT (HS+15wt%Halloysite®-clay-nanotube); CHX10% (HS+15wt% HNT-encapsulated with chlorhexidine 10%); and CHX20% (HS+15wt% HNT-encapsulated with CHX20%) were tested. Degree-of-conversion (DC%), Knoop hardness (KHN), and viscosity were analyzed. The ability of the sealant to wet the fissures was evaluated. Specimens were tested for zones of inhibition of microbial growth. S. mutans biofilm was tested by measuring recovered viability. Data were statistically analyzed (p<0.05). DC% was significantly higher for the HNT-CHX groups. For KHN, CHX10% presented a lower mean value than the other groups. Adding HNT resulted in higher viscosity values. The biofilm on CHX10% and CHX20% sealants presented remarkable CFU/mL reduction in comparison to the HS. The experimental material was able to reduce the biofilm development in S. mutans biofilm without compromising the sealant properties.