- Browse by Author
Browsing by Author "Martin, Jörg"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Chaperonins keeping a lid on folding proteins(2001-09) Kusmierczyk, Andrew R; Martin, JörgTwo classes of chaperonins are known in all groups of organisms to participate in the folding of newly synthesized proteins. Whereas bacterial type I chaperonins use a reversibly binding cofactor to temporarily sequester folding substrate proteins within the cylindrical chaperonin cavity, type II chaperonins in archaea and the eukaryotic cytosol appear to have evolved a built-in lid for this purpose. Not entirely surprisingly, this has consequences for the folding modes of the two types of chaperonins.Item High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin(2000-08) Kusmierczyk, Andrew R; Martin, JörgThe GroE chaperonin system can adapt to and function at various environmental folding conditions. To examine chaperonin-assisted protein folding at high salt concentrations, we characterized Escherichia coli GroE chaperonin activity in 1.2 M ammonium sulfate. Our data are consistent with GroEL undergoing a conformational change at this salt concentration, characterized by elevated ATPase activity and increased exposure of hydrophobic surface, as indicated by increased binding of the fluorophore bis-(5,5′)-8-anilino-1-naphthalene sulfonic acid to the chaperonin. The presence of the salt results in increased substrate stringency and dependence on the full GroE system for release and productive folding of substrate proteins. Surprisingly, GroEL is fully functional as a thermophilic chaperonin in high concentrations of ammonium sulfate and is stable at temperatures up to 75 °C. At these extreme conditions, GroEL can suppress aggregation and mediate refolding of non-native proteins.Item Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn(2003-06) Kusmierczyk, Andrew R; Martin, JörgThe properties of the ATPase activity of the type II chaperonin from Methanococcus maripaludis (Mm-cpn) were examined. Mm-cpn can hydrolyze not only ATP, but also CTP, UTP, and GTP, albeit with different effectiveness. The ATPase activity is dependent on magnesium and potassium ions, and is effectively inhibited by sodium ions. Maximal rates of ATP hydrolysis are achieved at 600 mM potassium. Initial rates of ATP hydrolysis by Mm-cpn were determined at various ATP concentrations, revealing for the first time the presence of both positive intra-ring and negative inter-ring cooperativity in the archaeal chaperonin.