- Browse by Author
Browsing by Author "Martínez-Márquez, Francisco"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity(Springer Nature, 2019-09-17) Zhu, Wen; Radadiya, Ashish; Bisson, Claudine; Wenzel, Sabine; Nordin, Brian E.; Martínez-Márquez, Francisco; Imasaki, Tsuyoshi; Sedelnikova, Svetlana E.; Coricello, Adriana; Baumann, Patrick; Berry, Alexandria H.; Nomanbhoy, Tyzoon K.; Kozarich, John W.; Jin, Yi; Rice, David W.; Takagi, Yuichiro; Richards, Nigel G. J.; Biochemistry and Molecular Biology, School of MedicineExpression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis.Item The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair(Elsevier, 2020-07-03) Rogers, Cody M.; Lee, Chun-Ying; Parkins, Samuel; Buehler, Nicholas J.; Wenzel, Sabine; Martínez-Márquez, Francisco; Takagi, Yuichiro; Myong, Sua; Bochman, Matthew L.; Biochemistry and Molecular Biology, School of MedicineDNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.