- Browse by Author
Browsing by Author "Marmorstein, Ronen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway(eLife Sciences Publications, 2021-08-06) Kweon, Hyae Yon; Lee, Mi-Ni; Dorfel, Max; Seo, Seungwoon; Gottlieb, Leah; PaPazyan, Thomas; McTiernan, Nina; Ree, Rasmus; Bolton, David; Garcia, Andrew; Flory, Michael; Crain, Jonathan; Sebold, Alison; Lyons, Scott; Ismail, Ahmed; Marchi, Elaine; Sonn, Seong-keun; Jeong, Se-Jin; Jeon, Sejin; Ju, Shinyeong; Conway, Simon J.; Kim, Taesoo; Kim, Hyun-Seok; Lee, Cheolju; Roh, Tae-Young; Arnesen, Thomas; Marmorstein, Ronen; Oh, Goo Taeg; Lyon, Gholson J.; Pediatrics, School of MedicineAmino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.Item Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15(Oxford University Press, 2019-05-01) Cheng, Hanyin; Gottlieb, Leah; Marchi, Elaine; Kleyner, Robert; Bhardwaj, Puja; Rope, Alan F.; Rosenheck, Sarah; Moutton, Sébastien; Philippe, Christophe; Eyaid, Wafaa; Alkuraya, Fowzan S.; Toribio, Janet; Mena, Rafael; Prada, Carlos E.; Stessman, Holly; Bernier, Raphael; Wermuth, Marieke; Kauffmann, Birgit; Blaumeiser, Bettina; Kooy, R Frank; Baralle, Diana; Mancini, Grazia M. S.; Conway, Simon J.; Xia, Fan; Chen, Zhao; Meng, Linyan; Mihajlovic, Ljubisa; Marmorstein, Ronen; Lyon, Gholson J.; Pediatrics, School of MedicineN-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.Item Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15(Oxford University Press, 2020-03-27) Cheng, Hanyin; Gottlieb, Leah; Marchi, Elaine; Kleyner, Robert; Bhardwaj, Puja; Rope, Alan F.; Rosenheck, Sarah; Moutton, Sébastien; Philippe, Christophe; Eyaid, Wafaa; Alkuraya, Fowzan S.; Toribio, Janet; Mena, Rafael; Prada, Carlos E.; Stessman, Holly; Bernier, Raphael; Wermuth, Marieke; Kauffmann, Birgit; Blaumeiser, Bettina; Kooy, R. Frank; Baralle, Diana; Mancini, Grazia M. S.; Conway, Simon J.; Xia, Fan; Chen, Zhao; Meng, Linyan; Mihajlovic, Ljubisa; Marmorstein, Ronen; Lyon, Gholson J.; Medicine, School of MedicineIn the original version of this article, Ezzat El-Akkad’s name was misspelled in the acknowledgements section; this has now been corrected. The authors apologize for this error.