- Browse by Author
Browsing by Author "Mardones, Muriel D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Tau ablation rescues vascular amyloid‐related deficits in a cerebral amyloid angiopathy model(Wiley, 2025-01-03) Mardones, Muriel D.; Jury, Nur; Juarez, Enrique Chimal; Patel, Henika; Martinez, Jonathan; Vanderbosch, Katie; Perkins, Abigail; Marambio, Yamil; Vidal, Ruben; Lasagna Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Close to 80 to 90% of subjects with AD also present cerebral amyloid angiopathy (CAA) a disease in which amyloid accumulation damages the vasculature and impairs blood flow. Since current AD therapies are targeting the disease focusing on amyloid, we are interested on determine how to decrease the accumulation of amyloid in the vasculature observed in CAA and our aim is to determine the impact of tau reduction in CAA pathogenesis. Method: We crossed the Tg‐FDD mice CAA model with Mapt‐/‐ mice to decrease tau levels and analyzed the disease pathogenesis in the different genotypes though behavioral tests, histological and morphometric assays and transcriptomic analysis using the nCounter neuroimmflamation panel from Nanostring. Result: We determined that tau ablation improved motor strength in the Tg‐FDD mice model, reduced amyloid deposition in the vasculature, decrease fibrinogen levels in the cortex, reduced astrocyte branching process associated to immunoreactivity. Nanostring analysis revealed that microglia function, oligodendrocyte and cytokine signaling are altered in the Tg‐FDD mice and that in the Tg‐FDD, Mapt ‐/‐ mice there is an increase in this mechanisms restoring the values to the ones observed in wild type mice. Conclusion: We are currently evaluating the pathways observed in the distinct inflammatory profile in microglia and oligodendrocytes. Our results suggest that tau ablation decreased CAA pathology in the Tg‐FDD mice model, which shows the potential therapeutic implications of targeting tau in CAA and related neurodegenerative diseases.Item Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy(MDPI, 2022-10) Mardones, Muriel D.; Gupta, Kunal; Neurological Surgery, School of MedicineMesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7–14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.