- Browse by Author
Browsing by Author "Marder, Karen"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls(Wiley, 2019-09) Agalliu, llir; Ortega, Roberto A.; San Luciano, Marta; Mirelman, Anat; Pont-Sunyer, Claustre; Brockmann, Kathrin; Vilas, Dolores; Tolosa, Eduardo; Berg, Daniela; Warø, Bjørg; Glickman, Amanda; Raymond, Deborah; Inzelberg, Rivka; Ruiz-Martinez, Javier; Mondragon, Elisabet; Friedman, Eitan; Hassin-Baer, Sharon; Alcalay, Roy N.; Mejia-Santana, Helen; Aasly, Jan; Foroud, Tatiana; Marder, Karen; Giladi, Nir; Bressman, Susan; Saunders-Pullman, Rachel; Medical and Molecular Genetics, School of MedicineBACKGROUND: Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 (LRRK2) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls. METHODS: Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients. RESULTS: Although cancer prevalence was similar among LRRK2-PD patients (32.3%), IPD patients (27.5%), and controls (27.5%; P = 0.33), LRRK2-PD had increased risks of leukemia (odds ratio [OR] = 4.55; 95% confidence interval [CI], 1.46-10.61) and skin cancer (OR = 1.61; 95% CI, 1.09-2.37). In the pooled analysis, LRRK2-PD patients had also elevated risks of leukemia (OR = 9.84; 95% CI, 2.15-44.94) and colon cancer (OR = 2.34; 95% CI, 1.15-4.74) when compared with IPD patients. CONCLUSIONS: The increased risks of leukemia as well as skin and colon cancers among LRRK2-PD patients suggest that LRRK2 mutations heighten risks of certain cancers. © 2019 International Parkinson and Movement Disorder Society.Item Genetic Testing in Parkinson's Disease(Wiley, 2023) Pal, Gian; Cook, Lola; Schulze, Jeanine; Verbrugge, Jennifer; Alcalay, Roy N.; Merello, Marcelo; Sue, Carolyn M.; Bardien, Soraya; Bonifati, Vincenzo; Chung, Sun Ju; Foroud, Tatiana; Gatto, Emilia; Hall, Anne; Hattori, Nobutaka; Lynch, Tim; Marder, Karen; Mascalzoni, Deborah; Novaković, Ivana; Thaler, Avner; Raymond, Deborah; Salari, Mehri; Shalash, Ali; Suchowersky, Oksana; Mencacci, Niccolò E.; Simuni, Tanya; Saunders-Pullman, Rachel; Klein, Christine; Medical and Molecular Genetics, School of MedicineGenetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines.Item Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture(Springer Nature, 2021-03) Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara; Saez-Atienzar, Sara; Reynolds, Regina H.; Gustavsson, Emil; Walton, Ronald L.; Ahmed, Sarah; Viollet, Coralie; Ding, Jinhui; Makarious, Mary B.; Diez-Fairen, Monica; Portley, Makayla K.; Shah, Zalak; Abramzon, Yevgeniya; Hernandez, Dena G.; Blauwendraat, Cornelis; Stone, David J.; Eicher, John; Parkkinen, Laura; Ansorge, Olaf; Clark, Lorraine; Honig, Lawrence S.; Marder, Karen; Lemstra, Afina; St. George-Hyslop, Peter; Londos, Elisabet; Morgan, Kevin; Lashley, Tammaryn; Warner, Thomas T.; Jaunmuktane, Zane; Galasko, Douglas; Santana, Isabel; Tienari, Pentti J.; Myllykangas, Liisa; Oinas, Minna; Cairns, Nigel J.; Morris, John C.; Halliday, Glenda M.; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Grassano, Maurizio; Calvo, Andrea; Mora, Gabriele; Canosa, Antonio; Floris, Gianluca; Bohannan, Ryan C.; Brett, Francesca; Gan-Or, Ziv; Geiger, Joshua T.; Moore, Anni; May, Patrick; Krüger, Rejko; Goldstein, David S.; Lopez, Grisel; Tayebi, Nahid; Sidransky, Ellen; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio; Shakkottai, Vikram G.; Perkins, Matthew; Newell, Kathy L.; Gasser, Thomas; Schulte, Claudia; Landi, Francesco; Salvi, Erika; Cusi, Daniele; Masliah, Eliezer; Kim, Ronald C.; Caraway, Chad A.; Monuki, Edwin S.; Brunetti, Maura; Dawson, Ted M.; Rosenthal, Liana S.; Albert, Marilyn S.; Pletnikova, Olga; Troncoso, Juan C.; Flanagan, Margaret E.; Mao, Qinwen; Bigio, Eileen H.; Rodríguez-Rodríguez, Eloy; Infante, Jon; Lage, Carmen; González-Aramburu, Isabel; Sanchez-Juan, Pascual; Ghetti, Bernardino; Keith, Julia; Black, Sandra E.; Masellis, Mario; Rogaeva, Ekaterina; Duyckaerts, Charles; Brice, Alexis; Lesage, Suzanne; Xiromerisiou, Georgia; Barrett, Matthew J.; Tilley, Bension S.; Gentleman, Steve; Logroscino, Giancarlo; Serrano, Geidy E.; Beach, Thomas G.; McKeith, Ian G.; Thomas, Alan J.; Attems, Johannes; Morris, Christopher M.; Palmer, Laura; Love, Seth; Troakes, Claire; Al-Sarraj, Safa; Hodges, Angela K.; Aarsland, Dag; Klein, Gregory; Kaiser, Scott M.; Woltjer, Randy; Pastor, Pau; Bekris, Lynn M.; Leverenz, James B.; Besser, Lilah M.; Kuzma, Amanda; Renton, Alan E.; Goate, Alison; Bennett, David A.; Scherzer, Clemens R.; Morris, Huw R.; Ferrari, Raffaele; Albani, Diego; Pickering-Brown, Stuart; Faber, Kelley; Kukull, Walter A.; Morenas-Rodriguez, Estrella; Lleó, Alberto; Fortea, Juan; Alcolea, Daniel; Clarimon, Jordi; Nalls, Mike A.; Ferrucci, Luigi; Resnick, Susan M.; Tanaka, Toshiko; Foroud, Tatiana M.; Graff-Radford, Neill R.; Wszolek, Zbigniew K.; Ferman, Tanis; Boeve, Bradley F.; Hardy, John A.; Topol, Eric J.; Torkamani, Ali; Singleton, Andrew B.; Ryten, Mina; Dickson, Dennis W.; Chiò, Adriano; Ross, Owen A.; Gibbs, J. Raphael; Dalgard, Clifton L.; Traynor, Bryan J.; Scholz, Sonja W.; Pathology and Laboratory Medicine, School of MedicineThe genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Item Genomewide Association Studies of LRRK2 Modifiers of Parkinson's Disease(Wiley, 2021-07) Lai, Dongbing; Alipanahi, Babak; Fontanillas, Pierre; Schwantes, Tae-Hwi; Aasly, Jan; Alcalay, Roy N.; Beecham, Gary W.; Berg, Daniela; Bressman, Susan; Brice, Alexis; Brockman, Kathrin; Clark, Lorraine; Cookson, Mark; Das, Sayantan; Van Deerlin, Vivianna; Follett, Jordan; Farrer, Matthew J.; Trinh, Joanne; Gasser, Thomas; Goldwurm, Stefano; Gustavsson, Emil; Klein, Christine; Lang, Anthony E.; Langston, J. William; Latourelle, Jeanne; Lynch, Timothy; Marder, Karen; Marras, Connie; Martin, Eden R.; McLean, Cory Y.; Mejia-Santana, Helen; Molho, Eric; Myers, Richard H.; Nuytemans, Karen; Ozelius, Laurie; Payami, Haydeh; Raymond, Deborah; Rogaeva, Ekaterina; Rogers, Michael P.; Ross, Owen A.; Samii, Ali; Saunders-Pullman, Rachel; Schüle, Birgitt; Schulte, Claudia; Scott, William K.; Tanner, Caroline; Tolosa, Eduardo; Tomkins, James E.; Vilas, Dolores; Trojanowski, John Q.; Uitti, Ryan; Vance, Jeffery M.; Visanji, Naomi P.; Wszolek, Zbigniew K.; Zabetian, Cyrus P.; Mirelman, Anat; Giladi, Nir; Urtreger, Avi Orr; Cannon, Paul; Fiske, Brian; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineObjective: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. Methods: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. Results: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. Interpretation: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.Item International Genetic Testing and Counseling Practices for Parkinson's Disease(Wiley, 2023) Saunders-Pullman, Rachel; Raymond, Deborah; Ortega, Roberto A.; Shalash, Ali; Gatto, Emilia; Salari, Mehri; Markgraf, Maggie; Alcalay, Roy N.; Mascalzoni, Deborah; Mencacci, Niccolò E.; Bonifati, Vincenzo; Merello, Marcelo; Chung, Sun Ju; Novakovic, Ivana; Bardien, Soraya; Pal, Gian; Hall, Anne; Hattori, Nobutaka; Lynch, Timothy; Thaler, Avner; Sue, Carolyn M.; Foroud, Tatiana; Verbrugge, Jennifer; Schulze, Jeanine; Cook, Lola; Marder, Karen; Suchowersky, Oksana; Klein, Christine; Simuni, Tatyana; Medical and Molecular Genetics, School of MedicineBackground: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. Objectives: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. Methods: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. Results: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. Conclusions: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.Item Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease(Nature Publishing Group, 2014-09) Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Department of Medical & Molecular Genetics, IU School of MedicineWe conducted a meta analysis of Parkinson’s disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as genome-wide significantItem Motor onset and diagnosis in Huntington disease using the diagnostic confidence level(Springer, 2015-12) Liu, Dawei; Long, Jeffrey D.; Zhang, Ying; Raymond, Lynn A.; Marder, Karen; Rosser, Anne; McCusker, Elizabeth A.; Mills, James A.; Paulsen, Jane S.; Department of Biostatistics, Richard M. Fairbanks School of Public HealthHuntington disease (HD) is a neurodegenerative disorder characterized by motor dysfunction, cognitive deterioration, and psychiatric symptoms, with progressive motor impairments being a prominent feature. The primary objectives of this study are to delineate the disease course of motor function in HD, to provide estimates of the onset of motor impairments and motor diagnosis, and to examine the effects of genetic and demographic variables on the progression of motor impairments. Data from an international multisite, longitudinal observational study of 905 prodromal HD participants with cytosine-adenine-guanine (CAG) repeats of at least 36 and with at least two visits during the followup period from 2001 to 2012 was examined for changes in the diagnostic confidence level from the Unified Huntington's Disease Rating Scale. HD progression from unimpaired to impaired motor function, as well as the progression from motor impairment to diagnosis, was associated with the linear effect of age and CAG repeat length. Specifically, for every 1-year increase in age, the risk of transition in diagnostic confidence level increased by 11% (95% CI 7-15%) and for one repeat length increase in CAG, the risk of transition in diagnostic confidence level increased by 47% (95% CI 27-69%). Findings show that CAG repeat length and age increased the likelihood of the first onset of motor impairment as well as the age at diagnosis. Results suggest that more accurate estimates of HD onset age can be obtained by incorporating the current status of diagnostic confidence level into predictive models.Item Participant-reported personal utility of genetic testing for Parkinson's disease and interest in clinical trial participation(Springer Nature, 2024-10-25) Oas, Hannah; Cook, Lola; Schwantes-An, Tae-Hwi; Walsh, Laurence E.; Wills, Anne-Marie; Mata, Ignacio F.; Nance, Martha A.; Beck, James C.; Naito, Anna; Marder, Karen; Alcalay, Roy N.; Verbrugge, Jennifer; Medical and Molecular Genetics, School of MedicineGenetic testing for Parkinson's disease (PD) is infrequently performed due to perceptions of low utility. We investigated the personal utility in PD GENEration and how results lead to enrollment in additional research studies. Participants (n = 972) underwent genetic testing, results disclosure, genetic counseling, and completed a survey examining the perceived personal utility of their results and interest in participating in additional studies. Most participants found their genetic test results useful, including satisfying curiosity (81%), feeling good about helping the medical community (80%), and having information to share with family (77%). There were no significant differences in responses based on result type. Forty-five percent of participants expressed interest in participating in research studies; whereas 16% of participants confirmed enrollment. Our results suggest that participants find personal utility in genetic testing regardless of results. Although participants may be interested in enrolling in additional research, they may need support and resources.Item A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease(2017-01) McGarry, Andrew; McDermott, Michael; Kieburtz, Karl; de Blieck, Elisabeth A.; Beal, Flint; Marder, Karen; Ross, Christopher; Shoulson, Ira; Gibert, Peter; Mallonee, William M.; Guttman, Mark; Wojcieszek, Joanne; Kumar, Rajeev; LeDoux, Mark S.; Jenkins, Mary; Rosas, H. Diana; Nance, Martha; Biglan, Kevin; Como, Peter; Dubinsky, Richard M.; Shannon, Kathleen M.; O'Suilleabhain, Padraig; Chou, Kelvin; Walker, Francis; Martin, Wayne; Wheelock, Vicki L.; McCusker, Elizabeth; Jankovic, Joseph; Singer, Carlos; Sanchez-Ramos, Juan; Scott, Burton; Suchowersky, Oksana; Factor, Stewart A.; Higgins, Donald S., Jr.; Molho, Eric; Revilla, Fredy; Caviness, John N.; Friedman, Joseph H.; Perlmutter, Joel S.; Feigin, Andrew; Anderson, Karen; Rodriguez, Ramon; McFarland, Nikolaus R.; Margolis, Russell L.; Farbman, Eric S.; Raymond, Lynn A.; Suski, Valerie; Kostyk, Sandra; Colcher, Amy; Seeberger, Lauren; Epping, Eric; Esmail, Sherali; Diaz, Nancy; Fung, Wai Lun Alan; Diamond, Alan; Frank, Samuel; Hanna, Philip; Hermanowicz, Neal; Dure, Leon S.; Cudkowicz, Merit; Department of Neurology, School of MedicineObjective: To test the hypothesis that chronic treatment of early-stage Huntington disease (HD) with high-dose coenzyme Q10 (CoQ) will slow the progressive functional decline of HD. Methods: We performed a multicenter randomized, double-blind, placebo-controlled trial. Patients with early-stage HD (n = 609) were enrolled at 48 sites in the United States, Canada, and Australia from 2008 to 2012. Patients were randomized to receive either CoQ 2,400 mg/d or matching placebo, then followed for 60 months. The primary outcome variable was the change from baseline to month 60 in Total Functional Capacity score (for patients who survived) combined with time to death (for patients who died) analyzed using a joint-rank analysis approach. Results: An interim analysis for futility revealed a conditional power of <5% for the primary analysis, prompting premature conclusion in July 2014. No statistically significant differences were seen between treatment groups for the primary or secondary outcome measures. CoQ was generally safe and well-tolerated throughout the study. Conclusions: These data do not justify use of CoQ as a treatment to slow functional decline in HD.Item Tools for communicating risk for Parkinson's disease(Springer Nature, 2022-11-29) Cook, Lola; Schulze, Jeanine; Uhlmann, Wendy R.; Verbrugge, Jennifer; Marder, Karen; Lee, Annie J.; Wang, Yuanjia; Alcalay, Roy N.; Nance, Martha; Beck, James C.; Medical and Molecular Genetics, School of MedicineWe have greater knowledge about the genetic contributions to Parkinson’s disease (PD) with major gene discoveries occurring in the last few decades and the identification of risk alleles revealed by genome-wide association studies (GWAS). This has led to increased genetic testing fueled by both patient and consumer interest and emerging clinical trials targeting genetic forms of the disease. Attention has turned to prodromal forms of neurodegenerative diseases, including PD, resulting in assessments of individuals at risk, with genetic testing often included in the evaluation. These trends suggest that neurologists, clinical geneticists, genetic counselors, and other clinicians across primary care and various specialties should be prepared to answer questions about PD genetic risks and test results. The aim of this article is to provide genetic information for professionals to use in their communication to patients and families who have experienced PD. This includes up-to-date information on PD genes, variants, inheritance patterns, and chances of disease to be used for risk counseling, as well as insurance considerations and ethical issues.