- Browse by Author
Browsing by Author "Mao, Rong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project(Elsevier, 2021) Prior, Thomas W.; Bayrak-Toydemir, Pinar; Lynnes, Ty C.; Mao, Rong; Metcalf, James D.; Muralidharan, Kasinathan; Iwata-Otsubo, Aiko; Pham, Ha T.; Pratt, Victoria M.; Qureshi, Shumaila; Requesens, Deborah; Shen, Junqing; Vetrini, Francesco; Kalman, Lisa; Medicine, School of MedicineSpinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.Item Specifications of the ACMG/AMP guidelines for ACADVL variant interpretation(Elsevier, 2023) Flowers, May; Dickson, Alexa; Miller, Marcus J.; Spector, Elaine; Enns, Gregory Mark; Baudet, Heather; Pasquali, Marzia; Racacho, Lemuel; Sadre-Bazzaz, Kianoush; Wen, Ting; Fogarty, Melissa; Fernandez, Raquel; Weaver, Meredith A.; Feigenbaum, Annette; Graham, Brett H.; Mao, Rong; Medical and Molecular Genetics, School of MedicineVery long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.