- Browse by Author
Browsing by Author "Mannina, Edward M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Extended Volumetric Follow-up of Juvenile Pilocytic Astrocytomas Treated with Proton Beam Therapy(The Particle Therapy Cooperative Group, 2016) Mannina, Edward M.; Bartlett, Greg K.; McMullen, Kevin P.; Radiation Oncology, School of MedicinePurpose: To describe volume changes following proton beam therapy (PBT) for juvenile pilocytic astrocytoma (JPA), we analyzed post-PBT magnetic resonance imaging (MRI) to clarify survivorship, response rate, and the concept of pseudoprogression. Materials and Methods: Pediatric patients with a histologic diagnosis of JPA after a biopsy or subtotal resection and at least 4 post-PBT MRIs were retrospectively reviewed. After PBT, tumors were contoured on follow-up T1-contrasted MRIs, and 3-dimensional volumes were plotted against time, with thresholds for progressive disease and partial response. Patterns of response, pseudoprogression, and progression were uncovered. Post-PBT clinical course was described by the need for further intervention and survivorship. Results: Fifteen patients with a median of 10 follow-up MRIs made up this report: 60% were heavily pretreated with multiple lines of chemotherapy, and 67% had undergone subtotal resection. With a median follow-up of 55.3 months after a median of 5400 centigray equivalents PBT, estimates of 5-year overall survival and intervention-free survival were 93% and 72%, respectively. The crude response rate of 73% included pseudoprogressing patients, who comprised 20% of the entire cohort; the phenomenon peaked between 3 and 8 months and resolved by 18 months. One nonresponder expired from progression. Post-PBT intervention was required in 53% of patients, with 1 patient resuming chemotherapy. There were no further resections or radiotherapy. One patient developed acute lymphoblastic leukemia, and another developed biopsy-proven radionecrosis. Conclusion: The PBT for inoperable/progressive JPA provided 72% 5-year intervention-free survival in heavily pretreated patients. Although most patients responded, 20% demonstrated pseudoprogression. The need for post-PBT surveillance for progression and treatment-induced sequelae should not be underestimated in this extended survivorship cohort.Item Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy(Elsevier, 2018) Shiue, Kevin; Cerra-Franco, Alberto; Shapiro, Ronald; Estabrook, Neil; Mannina, Edward M.; Deig, Christopher R.; Althouse, Sandra; Liu, Sheng; Wan, Jun; Zang, Yong; Agrawal, Namita; Ioannides, Pericles; Liu, Yongmei; Zhang, Chen; DesRosiers, Colleen; Bartlett, Greg; Ewing, Marvene; Langer, Mark P.; Watson, Gordon; Zellars, Richard; Kong, Feng-Ming; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineIntroduction It remains unclear if histology should be independently considered when choosing stereotactic ablative body radiotherapy dose prescriptions for NSCLC. Methods The study population included 508 patients with 561 lesions between 2000 and 2016, of which 442 patients with 482 lesions had complete dosimetric information. Eligible patients had histologically or clinically diagnosed early-stage NSCLC and were treated with 3 to 5 fractions. The primary endpoint was in-field tumor control censored by either death or progression. Involved lobe control was also assessed. Results At 6.7 years median follow-up, 3-year in-field control, involved lobe control, overall survival, and progression-free survival rates were 88.1%, 80.0%, 49.4%, and 37.2%, respectively. Gross tumor volume (GTV) (hazard ratio [HR] = 1.01 per mL, p = 0.0044) and histology (p = 0.0225) were independently associated with involved lobe failure. GTV (HR = 1.013, p = 0.001) and GTV dose (cutoff of 110 Gy, biologically effective dose with α/β = 10 [BED10], HR = 2.380, p = 0.0084) were independently associated with in-field failure. For squamous cell carcinomas, lower prescription doses were associated with worse in-field control (12 Gy × 4 or 10 Gy × 5 versus 18 Gy or 20 Gy × 3: HR = 3.530, p = 0.0447, confirmed by propensity score matching) and was independent of GTV (HR = 1.014 per mL, 95% confidence interval: 1.005–1.022, p = 0.0012). For adenocarcinomas, there were no differences in in-field control observed using the above dose groupings (p = 0.12 and p = 0.31, respectively). Conclusions In the absence of level I data, GTV and histology should be considered to personalize radiation dose for stereotactic ablative body radiotherapy. We suggest lower prescription doses (i.e., 12 Gy × 4 or 10 G × 5) should be avoided for squamous cell carcinomas if normal tissue tolerances are met.