- Browse by Author
Browsing by Author "Mandernack, Kevin W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments(Springer Nature, 2018-02) Carr, Stephanie A.; Schubotz, Florence; Dunbar, Robert B.; Mills, Christopher T.; Dias, Robert; Summons, Roger E.; Mandernack, Kevin W.; Earth Sciences, School of ScienceDespite accounting for the majority of sedimentary methane, the physiology and relative abundance of subsurface methanogens remain poorly understood. We combined intact polar lipid and metagenome techniques to better constrain the presence and functions of methanogens within the highly reducing, organic-rich sediments of Antarctica's Adélie Basin. The assembly of metagenomic sequence data identified phylogenic and functional marker genes of methanogens and generated the first Methanosaeta sp. genome from a deep subsurface sedimentary environment. Based on structural and isotopic measurements, glycerol dialkyl glycerol tetraethers with diglycosyl phosphatidylglycerol head groups were classified as biomarkers for active methanogens. The stable carbon isotope (δ13C) values of these biomarkers and the Methanosaeta partial genome suggest that these organisms are acetoclastic methanogens and represent a relatively small (0.2%) but active population. Metagenomic and lipid analyses suggest that Thaumarchaeota and heterotrophic bacteria co-exist with Methanosaeta and together contribute to increasing concentrations and δ13C values of dissolved inorganic carbon with depth. This study presents the first functional insights of deep subsurface Methanosaeta organisms and highlights their role in methane production and overall carbon cycling within sedimentary environments.Item Geochemical impact of super-critical C02 injection into the St. Peter Sandstone Formation within the Illinois Basin : implication for storage capability in a carbon dioxide sequestrian system(2014) Thomas, Richard Michael; Filippelli, Gabriel M.; Rupp, John A.; Mandernack, Kevin W.Deep injection of waste CO2 and fluids from regional energy plants into the St. Peter Formation of the Illinois Basin, could effectively provide long term deep geologic storage. This research aims to explore the viability of this proposed injection. There are some basic criteria that must be met to effectively store waste in a geologic reservoir. First, the reservoir must have sufficient porosity and permeability for both injectivity and for migration of the injected fluid through the reservoir. Second, the reservoir must be overlain by some form of impermeable seal or cap layer(s). Third, the reservoir should be sufficiently isolated from interaction with surface and near surface water. Finally, the formation must contain enough storage volume to handle significant amounts of injected material. Massive sandstone formations that host large saline aquifers have the potential to serve as high capacity storage sites. Much of the research targeting the potential suitability and storage capacity attributes of these formations has been promising, but reproducibility of the results has been less than ideal. Some of this variability has been attributed to petrological differences in the sandstone reservoirs that are not readily evident when studying the target formation over a geographically significant area. Based on the criteria, a promising candidate for injection and storage is the St. Peter Sandstone of the Illinois Basin. This study investigates the viability of liquefied CO2 storage within the St. Peter Sandstone on a micro scale. Initial porosity and permeability of the formation plug samples ranged from 16% to 19% and 26 to 981 millidarcies (mD), respectively. The wide difference in permeability is attributed to variations in strength of the cement, in this case quartz overgrowth in the sandstone. This preliminary evidence indicates that the storage capacity of the formation will remain constant or increase depending on injection location, suggesting that the St. Peter Formation will lend itself well to future storage.