- Browse by Author
Browsing by Author "Maluccio, Mary"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Bile Acids Conjugation in Human Bile Is Not Random: New Insights from 1H-NMR Spectroscopy at 800 MHz(Springer, 2009-06) Nagana Gowda, G. A.; Shanaiah, Narasimhamurthy; Cooper, Amanda; Maluccio, Mary; Raftery, Daniel; Department of Surgery, School of MedicineBile acids constitute a group of structurally closely related molecules and represent the most abundant constituents of human bile. Investigations of bile acids have garnered increased interest owing to their recently discovered additional biological functions including their role as signaling molecules that govern glucose, fat and energy metabolism. Recent NMR methodological developments have enabled single-step analysis of several highly abundant and common glycine- and taurine- conjugated bile acids, such as glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid. Investigation of these conjugated bile acids in human bile employing high field (800 MHz) (1)H-NMR spectroscopy reveals that the ratios between two glycine-conjugated bile acids and their taurine counterparts correlate positively (R2 = 0.83-0.97; p = 0.001 x 10(-2)-0.006 x 10(-7)) as do the ratios between a glycine-conjugated bile acid and its taurine counterpart (R2 = 0.92-0.95; p = 0.004 x 10(-3)-0.002 x 10(-10)). Using such correlations, concentration of individual bile acids in each sample could be predicted in good agreement with the experimentally determined values. These insights into the pattern of bile acid conjugation in human bile between glycine and taurine promise useful clues to the mechanism of bile acids' biosynthesis, conjugation and enterohepatic circulation, and may improve our understanding of the role of individual conjugated bile acids in health and disease.Item Contemporary paradigm for the evaluation and treatment of hereditary gastric cancer(AME Publishing Company, 2019-02-25) Skill, Nicholas; Maluccio, Mary; Surgery, School of MedicineGastric cancer is the third leading cause of cancer mortality worldwide. Survival is linked to stage at diagnosis and tolerance to surgery and adjuvant therapy. The emergence of sophisticated methods to identify patients at high risk for the development of gastric cancer has given us an opportunity to eliminate a lethal disease in an identifiable patient population. Guidelines and recommendations have been established and prophylactic total gastrectomy is considered the most effective treatment. However, this requires substantial physical and emotional investment. It is imperative that patients and families are supported by genetic counseling, ongoing surveillance, and survivorship studies.Item Decreased PCSK9 expression in human hepatocellular carcinoma(Springer (Biomed Central Ltd.), 2015-12-16) Bhat, Mamatha; Skill, Nicolas; Marcus, Victoria; Deschenes, Marc; Tan, Xianming; Bouteaud, Jeanne; Negi, Sarita; Awan, Zuhier; Aikin, Reid; Kwan, Janet; Amre, Ramila; Tabaries, Sebastien; Hassanain, Mazen; Seidah, Nabil G.; Maluccio, Mary; Siegel, Peter; Metrakos, Peter; Department of Surgery, IU School of MedicineBACKGROUND: The management of hepatocellular carcinoma (HCC) is limited by the lack of adequate screening biomarkers and chemotherapy. In response, there has been much interest in tumor metabolism as a therapeutic target. PCSK9 stimulates internalization of the LDL-receptor, decreases cholesterol uptake into hepatocytes and affects liver regeneration. Thus, we investigated whether PCSK9 expression is altered in HCC, influencing its ability to harness cholesterol metabolism. METHODS: Thirty-nine patients undergoing partial hepatectomy or liver transplantation for HCC were consented for use of HCC tissue to construct a tissue microarray (TMA). The TMA was immunostained for PCSK9. Imagescope software was used to objectively determine staining, and assess for pathological and clinical correlations. PCSK9 and LDL receptor mRNA levels in flash-frozen HCC and adjacent liver tissue were determined by quantitative RT-PCR. Serum PCSK9 levels were determined by ELISA. RESULTS: By immunohistochemistry, there was significantly lower expression of PCSK9 in HCC as compared to adjacent cirrhosis (p-value < 0.0001, wilcoxon signed-rank test). Significantly greater staining of PCSK9 was present in cirrhosis compared to HCC (p value <0.0001), and positivity (percentage of positive cells) was significantly greater in cirrhosis compared to HCC (p-value < 0.0001). Conversely, significantly higher expression of LDL-R was present in HCC as compared to the adjacent cirrhosis (p-value < 0.0001). There was no significant correlation of PCSK9 staining with grade of tumor, but there were significant correlations between PCSK9 staining and stage of fibrosis, according to spearman correlation test. PCSK9 mRNA levels were relatively less abundant within HCC compared to adjacent liver tissue (p-value =0.08) and normal control tissue (p-value =0.02). In contrast, serum PCSK9 levels were significantly increased among patients with HCC compared to those with chronic liver disease without HCC (p-value =0.029). LDL receptor mRNA was consistantly greater in HCC when compared to normal control tissue (p-value = 0.06) and, in general, was significantly greater in HCC when compared to adjacent liver (p-value = 0.04). CONCLUSIONS: The decreased expression of PCSK9 and conversely increased LDL-R expression in HCC suggests that HCC modulates its local microenvironment to enable a constant energy supply. Larger-scale studies should be conducted to determine whether PCSK9 could be a therapeutic target for HCC.Item Detection of Hepatocellular Carcinoma in Hepatitis C Patients: Biomarker Discovery by LC-MS(Elsevier, 2014-09-01) Bowers, Jeremiah; Hughes, Emma; Skill, Nicholas; Maluccio, Mary; Raftery, Daniel; Department of Surgery, IU School of MedicineHepatocellular carcinoma (HCC) accounts for most cases of liver cancer worldwide; contraction of hepatitis C (HCV) is considered a major risk factor for liver cancer even when individuals have not developed formal cirrhosis. Global, untargeted metabolic profiling methods were applied to serum samples from patients with either HCV alone or HCC (with underlying HCV). The main objective of the study was to identify metabolite based biomarkers associated with cancer risk, with the long term goal of ultimately improving early detection and prognosis. Serum global metabolite profiles from patients with HCC (n=37) and HCV (n=21) were obtained using high performance liquid chromatography-mass spectrometry (HPLC-MS) methods. The selection of statistically significant metabolites for partial least-squares discriminant analysis (PLS-DA) model creation based on biological and statistical significance was contrasted to that of a traditional approach utilizing p-values alone. A PLS-DA model created using the former approach resulted in a model with 92% sensitivity, 95% specificity, and an AUROC of 0.93. A series of PLS-DA models iteratively utilizing three to seven metabolites that were altered significantly (p<0.05) and sufficiently (FC≤0.7 or FC≥1.3) showed the best performance using p-values alone, the PLS-DA model was capable of generating 73% sensitivity, 95% specificity, and an AUROC of 0.92. Metabolic profiles derived from LC-MS readily distinguish patients with HCC and HCV from those with HCV only. Differences in the metabolic profiles between highrisk individuals and HCC indicate the possibility of identifying the early development of liver cancer in at risk patients. The use of biological significance as a selection process prior to PLSDA modeling may offer improved probabilities for translation of newly discovered biomarkers to clinical application.Item Differentiating Hepatocellular Carcinoma from Hepatitis C Using Metabolite Profiling(MDPI, 2012-10-10) Wei, Siwei; Suryani, Yuliana; Gowda, G. A. Nagana; Skill, Nicholas; Maluccio, Mary; Raftery, Daniel; Surgery, School of MedicineHepatocellular carcinoma (HCC) accounts for most liver cancer cases worldwide. Contraction of the hepatitis C virus (HCV) is considered a major risk factor for liver cancer. In order to identify the risk of cancer, metabolic profiling of serum samples from patients with HCC (n=40) and HCV (n=22) was performed by 1H nuclear magnetic resonance spectroscopy. Multivariate statistical analysis showed a distinct separation of the two patient cohorts, indicating a distinct metabolic difference between HCC and HCV patient groups based on signals from lipids and other individual metabolites. Univariate analysis showed that three metabolites (choline, valine and creatinine) were significantly altered in HCC. A PLS-DA model based on these three metabolites showed a sensitivity of 80%, specificity of 71% and an area under the receiver operating curve of 0.83, outperforming the clinical marker alpha-fetoprotein (AFP). The robustness of the model was tested using Monte-Carlo cross validation (MCCV). This study showed that metabolite profiling could provide an alternative approach for HCC screening in HCV patients, many of whom have high risk for developing liver cancer.Item Evaluation of 11C-Acetate and 18 F-FDG PET/CT in mouse multidrug resistance gene-2 deficient mouse model of hepatocellular carcinoma(BioMed Central, 2015-05) Territo, Paul R.; Maluccio, Mary; Riley, Amanda A.; McCarthy, Brian P.; Fletcher, James; Tann, Mark; Saxena, Romil; Skill, Nicholas J.; Department of Radiology and Imaging, IU School of MedicineBackground Hepatocellular carcinoma (HCC) remains a global health problem with unique diagnostic and therapeutic challenges, including difficulties in identifying the highest risk patients. Previous work from our lab has established the murine multidrug resistance-2 mouse (MDR2) model of HCC as a reasonable preclinical model that parallels the changes seen in human inflammatory associated HCC. The purpose of this study is to evaluate modalities of PET/CT in MDR2−/− mice in order to facilitate therapeutic translational studies from bench to bedside. Methods 18F-FDG and 11C-acetate PET/CT was performed on 12 m MDR2−/− mice (n = 3/tracer) with HCC and 12 m MDR2−/+ control mice (n = 3/tracer) without HCC. To compare PET/CT to biological markers of HCC and cellular function, serum alpha-fetoprotein (AFP), lysophosphatidic acid (LPA), cAMP and hepatic tumor necrosis factor α (TNFα) were quantified in 3-12 m MDR2−/− (n = 10) mice using commercially available ELISA analysis. To translate results in mice to patients 11C-acetate PET/CT was also performed in 8 patents suspected of HCC recurrence following treatment and currently on the liver transplant wait list. Results Hepatic18F-FDG metabolism was not significantly increased in MDR2−/− mice. In contrast, hepatic 11C-acetate metabolism was significantly elevated in MDR2−/− mice when compared to MDR2−/+ controls. Serum AFP and LPA levels increased in MDR2−/− mice contemporaneous with the emergence of HCC. This was accompanied by a significant decrease in serum cAMP levels and an increase in hepatic TNFα. In patients suspected of HCC recurrence there were 5 true positives, 2 true negatives and 1 suspected false 11C-acetate negative. Conclusions Hepatic 11C-acetate PET/CT tracks well with HCC in MDR2−/− mice and patients with underlying liver disease. Consequently 11C-acetate PET/CT is well suited to study 1) HCC emergence/progression in patients and 2) reduce animal numbers required to study new chemotherapeutics in murine models of HCC.Item Murine study of portal hypertension associated endothelin-1 hypo-response(Baishideng Publishing Group, 2015-04-28) Theodorakis, Nicholas; Maluccio, Mary; Skill, Nicholas; Department of Medicine, IU School of MedicineAIM: To investigate endothelin-1 hypo-responsive associated with portal hypertension in order to improve patient treatment outcomes. METHODS: Wild type, eNOS(-/-) and iNOS(-/-) mice received partial portal vein ligation surgery to induce portal hypertension or sham surgery. Development of portal hypertension was determined by measuring the splenic pulp pressure, abdominal aortic flow and portal systemic shunting. To measure splenic pulp pressure, a microtip pressure transducer was inserted into the spleen pulp. Abdominal aortic flow was measured by placing an ultrasonic Doppler flow probe around the abdominal aorta between the diaphragm and celiac artery. Portal systemic shunting was calculated by injection of fluorescent microspheres in to the splenic vein and determining the percentage accumulation of spheres in liver and pulmonary beds. Endothelin-1 hypo-response was evaluated by measuring the change in abdominal aortic flow in response to endothelin-1 intravenous administration. In addition, thoracic aorta endothelin-1 contraction was measured in 5 mm isolated thoracic aorta rings ex-vivo using an ADI small vessel myograph. RESULTS: In wild type and iNOS(-/-) mice splenic pulp pressure increased from 7.5 ± 1.1 mmHg and 7.2 ± 1 mmHg to 25.4 ± 3.1 mmHg and 22 ± 4 mmHg respectively. In eNOS(-/-) mice splenic pulp pressure was increased after 1 d (P = NS), after which it decreased and by 7 d was not significantly elevated when compared to 7 d sham operated controls (6.9 ± 0.6 mmHg and 7.3 ± 0.8 mmHg respectively, P = 0.3). Abdominal aortic flow was increased by 80% and 73% in 7 d portal vein ligated wild type and iNOS when compared to shams, whereas there was no significant difference in 7 d portal vein ligated eNOS(-/-) mice when compared to shams. Endothelin-1 induced a rapid reduction in abdominal aortic blood flow in wild type, eNOS(-/-) and iNOS(-/-) sham mice (50% ± 8%, 73% ± 9% and 47% ± 9% respectively). Following portal vein ligation endothelin-1 reduction in blood flow was significantly diminished in each mouse group. Abdominal aortic flow was reduced by 19% ± 9%, 32% ± 10% and 9% ± 9% in wild type, eNOS(-/-) and iNOS(-/-) mice respectively. CONCLUSION: Aberrant endothelin-1 response in murine portal hypertension is NOS isoform independent. Moreover, portal hypertension in the portal vein ligation model is independent of ET-1 function.