- Browse by Author
Browsing by Author "Maloney, Sara"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item APC Loss Prevents Doxorubicin-Induced Cell Death by Increasing Drug Efflux and a Chemoresistant Cell Population in Breast Cancer(MDPI, 2023-04-21) Stefanski, Casey D.; Arnason, Anne; Maloney, Sara; Kotsen, Janna; Powers, Elizabeth; Zhang, Jian-Ting; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineChemoresistance is a major health concern affecting cancer patients. Resistance is multifactorial, with one mechanism being the increased expression of ABC transporters (such as MDR1 and MRP1), which are drug efflux transporters capable of preventing intracellular accumulation of drugs and cell death. Our lab showed that the loss of Adenomatous Polyposis Coli (APC) caused an intrinsic resistance to doxorubicin (DOX), potentially through an enhanced tumor-initiating cell (TIC) population and the increased activation of STAT3 mediating the expression of MDR1 in the absence of WNT being activated. Here, in primary mouse mammary tumor cells, the loss of APC decreased the accumulation of DOX while increasing the protein levels of MDR1 and MRP1. We demonstrated decreased APC mRNA and protein levels in breast cancer patients compared with normal tissue. Using patient samples and a panel of human breast cancer cell lines, we found no significant trend between APC and either MDR1 or MRP1. Since the protein expression patterns did not show a correlation between the ABC transporters and the expression of APC, we evaluated the drug transporter activity. In mouse mammary tumor cells, the pharmacological inhibition or genetic silencing of MDR1 or MRP1, respectively, decreased the TIC population and increased DOX-induced apoptosis, supporting the use of ABC transporter inhibitors as therapeutic targets in APC-deficient tumors.Item Bcl-2 Up-Regulation Mediates Taxane Resistance Downstream of APC Loss(MDPI, 2024-06-19) Wise, Angelique R.; Maloney, Sara; Hering, Adam; Zabala, Sarah; Richmond, Grace E.; VanKlompenberg, Monica K.; Nair, Murlidharan T.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineTriple-negative breast cancer (TNBC) patients are treated with traditional chemotherapy, such as the taxane class of drugs. One such drug, paclitaxel (PTX), can be effective in treating TNBC; however, many tumors will develop drug resistance, which can lead to recurrence. In order to improve patient outcomes and survival, there lies a critical need to understand the mechanism behind drug resistance. Our lab made the novel observation that decreased expression of the Adenomatous Polyposis Coli (APC) tumor suppressor using shRNA caused PTX resistance in the human TNBC cell line MDA-MB-157. In cells lacking APC, induction of apoptosis by PTX was decreased, which was measured through cleaved caspase 3 and annexin/PI staining. The current study demonstrates that CRISPR-mediated APC knockout in two other TNBC lines, MDA-MB-231 and SUM159, leads to PTX resistance. In addition, the cellular consequences and molecular mechanisms behind APC-mediated PTX response have been investigated through analysis of the BCL-2 family of proteins. We found a significant increase in the tumor-initiating cell population and increased expression of the pro-survival family member Bcl-2, which is widely known for its oncogenic behavior. ABT-199 (Venetoclax), is a BH3 mimetic that specifically targets Bcl-2. ABT-199 has been used as a single or combination therapy in multiple hematologic malignancies and has shown promise in multiple subtypes of breast cancer. To address the hypothesis that APC-induced Bcl-2 increase is responsible for PTX resistance, we combined treatment of PTX and ABT-199. This combination treatment of CRISPR-mediated APC knockout MDA-MB-231 cells resulted in alterations in apoptosis, suggesting that Bcl-2 inhibition restores PTX sensitivity in APC knockout breast cancer cells. Our studies are the first to show that Bcl-2 functional inhibition restores PTX sensitivity in APC mutant breast cancer cells. These studies are critical to advance better treatment regimens in patients with TNBC.