- Browse by Author
Browsing by Author "Mallappa, Rashmi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Exploring Casual COVID-19 Data Visualizations on Twitter: Topics and Challenges(MDPI, 2020-09) Trajkova, Milka; Alhakamy, A'aeshah; Cafaro, Francesco; Vedak, Sanika; Mallappa, Rashmi; Kankara, Sreekanth R.; Human-Centered Computing, School of Informatics and ComputingSocial networking sites such as Twitter have been a popular choice for people to express their opinions, report real-life events, and provide a perspective on what is happening around the world. In the outbreak of the COVID-19 pandemic, people have used Twitter to spontaneously share data visualizations from news outlets and government agencies and to post casual data visualizations that they individually crafted. We conducted a Twitter crawl of 5409 visualizations (from the period between 14 April 2020 and 9 May 2020) to capture what people are posting. Our study explores what people are posting, what they retweet the most, and the challenges that may arise when interpreting COVID-19 data visualization on Twitter. Our findings show that multiple factors, such as the source of the data, who created the chart (individual vs. organization), the type of visualization, and the variables on the chart influence the retweet count of the original post. We identify and discuss five challenges that arise when interpreting these casual data visualizations, and discuss recommendations that should be considered by Twitter users while designing COVID-19 data visualizations to facilitate data interpretation and to avoid the spread of misconceptions and confusion.Item Exploring Casual COVID-19 Data Visualizations on Twitter: Topics and Challenges(MDPI, 2020-09) Trajkova, Milka; Alhakamy, A’aeshah; Cafaro, Francesco; Vedak, Sanika; Mallappa, Rashmi; Kankara, Sreekanth R.; Human-Centered Computing, School of Informatics and ComputingSocial networking sites such as Twitter have been a popular choice for people to express their opinions, report real-life events, and provide a perspective on what is happening around the world. In the outbreak of the COVID-19 pandemic, people have used Twitter to spontaneously share data visualizations from news outlets and government agencies and to post casual data visualizations that they individually crafted. We conducted a Twitter crawl of 5409 visualizations (from the period between 14 April 2020 and 9 May 2020) to capture what people are posting. Our study explores what people are posting, what they retweet the most, and the challenges that may arise when interpreting COVID-19 data visualization on Twitter. Our findings show that multiple factors, such as the source of the data, who created the chart (individual vs. organization), the type of visualization, and the variables on the chart influence the retweet count of the original post. We identify and discuss five challenges that arise when interpreting these casual data visualizations, and discuss recommendations that should be considered by Twitter users while designing COVID-19 data visualizations to facilitate data interpretation and to avoid the spread of misconceptions and confusion.Item Move Your Body: Engaging Museum Visitors with Human-Data Interaction(ACM, 2020-04) Trajkova, Milka; Alhakamy, A’aeshah; Cafaro, Francesco; Mallappa, Rashmi; Kankara, Sreekanth R.; Human-Centered Computing, School of Informatics and ComputingMuseums have embraced embodied interaction: its novelty generates buzz and excitement among their patrons, and it has enormous educational potential. Human-Data Interaction (HDI) is a class of embodied interactions that enables people to explore large sets of data using interactive visualizations that users control with gestures and body movements. In museums, however, HDI installations have no utility if visitors do not engage with them. In this paper, we present a quasi-experimental study that investigates how different ways of representing the user ("mode type") next-to a data visualization alters the way in which people engage with a HDI system. We consider four mode types: avatar, skeleton, camera overlay, and control. Our findings indicate that the mode type impacts the number of visitors that interact with the installation, the gestures that people do, and the amount of time that visitors spend observing the data on display and interacting with the system.