- Browse by Author
Browsing by Author "Majumdar, Sreeparna"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex(Public Library of Science, 2018-01-25) Patel, Dharmeshkumar; Shimomura, Atsushi; Majumdar, Sreeparna; Holley, Matthew C.; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of MedicineThe histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear.Item Identifying the Neural Circuit That Regulates Social Familiarity Induced Anxiolysis (SoFiA)(2020-06) Majumdar, Sreeparna; Cummins, Theodore R.; Truitt, William A.; Block, Michelle L.; Johnson, Phillip L.; Engleman, Eric A.Mental health is crucially linked to social behavior. A crucial aspect of healthy social behavior involves learning to adapt emotional responses to social cues, for example learning to suppress anxiety through social familiarity, or social familiarity induced anxiolysis (SoFiA). SoFiA is well documented; however, the neural mechanisms of SoFiA are unclear. SoFiA is modeled in rats by employing a social interaction habituation (SI-hab) protocol. Using SI-hab protocol it has been determined that SoFiA represents social safety learning, which requires both anxiogenic stimulus (Anx) and social familiarity (SF) during training sessions (5-6 daily SI sessions), and SoFiA expression is dependent on infralimbic cortex (IL). Based on these findings we hypothesize that Anx and SF are processed by unique neural systems, and repeated convergence of these signals interact within IL to induce plasticity, resulting in social safety learning and anxiolysis. Following SoFiA expression, rats were either sacrificed 30 minutes {for gene expression or Neural Activity Regulated Gene (NARG) analysis} or perfused 90 minutes (for cFos immunoreactivity analysis) after SI session on social training day 5. This led to gaining insights into regions of brain involved in SoFiA response as well as the underlying molecular mechanisms. We identified amygdala, specifically the central amygdala (CeA), basomedial amygdala (BMA) and basolateral amygdala (BLA) as potential candidate regions in SoFiA response. Next, we investigated the role of IL and its efferent pathways in SoFiA expression using inhibitory DREADDs and intersectional chemogenetics to inhibit IL projection neurons and/or axons. We identified that specific projection neurons within the IL are pivotal for SoFiA expression, and that within these projections, the ones that specifically projected to the amygdala are most crucial for expression of SoFiA.Item Psychosocial impairment following mild blast-induced traumatic brain injury in rats(Elsevier, 2021) Race, Nicholas S.; Andrews, Katharine D.; Lungwitz, Elizabeth A.; Vega Alvarez, Sasha M.; Warner, Timothy R.; Acosta, Glen; Cao, Jiayue; Lu, Kun-Han; Liu, Zhongming; Dietrich, Amy D.; Majumdar, Sreeparna; Shekhar, Anantha; Truitt, William A.; Shi, Riyi; Anatomy, Cell Biology and Physiology, School of MedicineTraumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.Item Tumor Necrosis Factor Alpha (TNF-α) Disrupts Kir4.1 Channel Expression Resulting in Müller Cell Dysfunction in the RetinaDiurnal Rhythm of Kir4.1 in the Retina(ARVO, 2017-05-01) Hassan, Iraj; Luo, Qianyi; Majumdar, Sreeparna; Dominguez, James M.; Busik, Julia V.; Bhatwadekar, Ashay D.; Department of Ophthalmology, IU School of MedicinePurpose: Diabetic patients often are affected by vision problems. We previously identified diabetic retinopathy (DR) as a disease of clock gene dysregulation. TNF-α, a proinflammatory cytokine, is known to be elevated in DR. Müller cells maintain retinal water homeostasis and K+ concentration via Kir4.1 channels. Notably, Kir4.1 expression is reduced in diabetes; however, the interplay of TNF-α, Kir4.1, and clock genes in Müller cells remains unknown. We hypothesize that the Kir4.1 in Müller cells is under clock regulation, and increase in TNF-α is detrimental to Kir4.1. Methods: Long-Evans rats were made diabetic using streptozotocin (STZ). Retinal Kir4.1 expression was determined at different time intervals. Rat Müller (rMC-1) cells were transfected with siRNA for Per2 or Bmal1 and in parallel treated with TNF-α (5–5000 pM) to determine Kir4.1 expression. Results: Kir4.1 expression exhibited a diurnal rhythm in the retina; however, with STZ-induced diabetes, Kir4.1 was reduced overall. Kir4.1 rhythm was maintained in vitro in clock synchronized rMC-1 cells. Clock gene siRNA-treated rMC-1 exhibited a decrease in Kir4.1 expression. TNF-α treatment of rMCs lead to a profound decrease in Kir4.1 due to reduced colocalization of Kir4.1 channels with synapse-associated protein (SAP97) and disorganization of the actin cytoskeleton. Conclusions: Our findings demonstrate that Kir4.1 channels possess a diurnal rhythm, and this rhythm is dampened with diabetes, thereby suggesting that the increase in TNF-α is detrimental to normal Kir4.1 rhythm and expression.