- Browse by Author
Browsing by Author "Main, Russell P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity(MDPI, 2022-05-28) Wright, Christian S.; Hill, Erica R.; Reyes Fernandez, Perla C.; Thompson, William R.; Gallant, Maxime A.; Campbell, Wayne W.; Main, Russell P.; Physical Therapy, School of Health and Human SciencesHigher protein (>30% of total energy, HP)-energy restriction (HP-ER) diets are an effective means to improve body composition and metabolic health. However, weight loss (WL) is associated with bone loss, and the impact of HP-ER diets on bone is mixed and controversial. Recent evidence suggests conflicting outcomes may stem from differences in age, hormonal status, and the predominant source of dietary protein consumed. Therefore, this study investigated the effect of four 12-week energy restriction (ER) diets varying in predominate protein source (beef, milk, soy, casein) and protein quantity (normal protein, NP 15% vs. high, 35%) on bone and body composition outcomes in 32-week-old obese, ovariectomized female rats. Overall, ER decreased body weight, bone quantity (aBMD, aBMC), bone microarchitecture, and body composition parameters. WL was greater with the NP vs. HP-beef and HP-soy diets, and muscle area decreased only with the NP diet. The HP-beef diet exacerbated WL-induced bone loss (increased trabecular separation and endocortical bone formation rates, lower bone retention and trabecular BMC, and more rod-like trabeculae) compared to the HP-soy diet. The HP-milk diet did not augment WL-induced bone loss. Results suggest that specific protein source recommendations may be needed to attenuate the adverse alterations in bone quality following an HP-ER diet in a model of postmenopausal obesity.Item Regulation of osteoblast activity by Pyk2-targeted approaches(2016-11-15) Posritong, Sumana; Bruzzaniti, Angela; Chu, Tien-Min G.; Bottino, Marco C.; Li, Jiliang; Main, Russell P.The hormonal and cellular mechanisms controlling bone formation are not completely understood. The proline-rich tyrosine kinase 2 (Pyk2) is important for osteoblast (OB) activity and bone formation. However, female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone volume/total volume. Previously, our laboratory found ovariectomized Pyk2-KO mice supplemented with 17β-estradiol (E2) exhibited a greater increase in bone volume than WT mice treated with E2. The overall hypotheses of our studies are that Pyk2 regulates OB activity by modulating the E2-signaling cascade and that a Pyk2-inhibitor will promote OB activity and be suitable for bone regeneration applications. In Aim1, we determined the mechanism of action of Pyk2 and E2 in OBs. Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In the presence of E2 or raloxifene, a selective estrogen receptor (ER) modulator, both matrix formation and mineralization were further increased in Pyk2-KO OBs, but not WT OBs. Consistent with a role of Pyk2 in E2 signaling, Pyk2-depletion led to the proteasome-mediated degradation of ERα, but not ERβ. Finally, we found Pyk2-depletion and E2 have an additive effect on ERK phosphorylation, known to increase cell differentiation and survival. In Aim2, we developed a Pyk2-inhibitor loaded hydrogel and evaluated its viscosity, gelation time, swelling, degradation, and release behavior. We found that a hydrogel composed of PEGDA1000 plus 10% gelatin exhibited viscosity and shear-thinning behavior suitable for use as an injectable-carrier. Importantly, the Pyk2-inhibitor-hydrogel was cytocompatible, retained its inhibitory activity against Pyk2 leading to an increase in OB activity. In conclusion, therapeutic strategies targeting Pyk2 may improve systemic bone formation, while Pyk2-inhibitor loaded hydrogels may be suitable for targeted bone regeneration in craniofacial and/or the other skeletal defects.