- Browse by Author
Browsing by Author "Mahmoudiandehkordi, Siamak"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts(Nature Research, 2019-10-17) St. John-Williams, Lisa; Mahmoudiandehkordi, Siamak; Arnold, Matthias; Massaro, Tyler; Blach, Colette; Kastenmüller, Gabi; Louie, Gregory; Kueider-Paisley, Alexandra; Han, Xianlin; Baillie, Rebecca; Motsinger-Reif, Alison A.; Rotroff, Daniel; Nho, Kwangsik; Saykin, Andrew J.; Risacher, Shannon L.; Koal, Therese; Moseley, M. Arthur; Tenenbaum, Jessica D.; Thompson, J. Will; Kaddurah-Daouk, Rima; Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s Disease Metabolomics Consortium; Radiology and Imaging Sciences, School of MedicineAlzheimer’s disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease. To interrogate the relationship between system level metabolites and disease susceptibility and progression, the AD Metabolomics Consortium (ADMC) in partnership with AD Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for patients in the ADNI1 cohort. We used the Biocrates Bile Acids platform to evaluate the association of metabolic levels with disease risk and progression. We detail the quantitative metabolomics data generated on the baseline samples from ADNI1 and ADNIGO/2 (370 cognitively normal, 887 mild cognitive impairment, and 305 AD). Similar to our previous reports on ADNI1, we present the tools for data quality control and initial analysis. This data descriptor represents the third in a series of comprehensive metabolomics datasets from the ADMC on the ADNI.Item Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease(Cell Press, 2020-11-17) Baloni, Priyanka; Funk, Cory C.; Yan, Jingwen; Yurkovich, James T.; Kueider-Paisley, Alexandra; Nho, Kwangsik; Heinken, Almut; Jia, Wei; Mahmoudiandehkordi, Siamak; Louie, Gregory; Saykin, Andrew J.; Arnold, Matthias; Kastenmüller, Gabi; Griffiths, William J.; Thiele, Ines; Kaddurah-Daouk, Rima; Price, Nathan D.; Radiology and Imaging Sciences, School of MedicineIncreasing evidence suggests Alzheimer's disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline.Item Serum Bile Acids Improve Prediction of Alzheimer's Progression in a Sex-Dependent Manner(Wiley, 2024) Chen, Tianlu; Wang, Lu; Xie, Guoxiang; Kristal, Bruce S.; Zheng, Xiaojiao; Sun, Tao; Arnold, Matthias; Louie, Gregory; Li, Mengci; Wu, Lirong; Mahmoudiandehkordi, Siamak; Sniatynski, Matthew J.; Borkowski, Kamil; Guo, Qihao; Kuang, Junliang; Wang, Jieyi; Nho, Kwangsik; Ren, Zhenxing; Kueider-Paisley, Alexandra; Blach, Colette; Kaddurah-Daouk, Rima; Jia, Wei; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer Disease Metabolomics Consortium (ADMC); Radiology and Imaging Sciences, School of MedicineSex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative. The findings revealed that these BA features exhibited significant correlations with clinical stages, encompassing cognitively normal (CN), early and late mild cognitive impairment, and AD, as well as cognitive performance. Importantly, these associations are more pronounced in men than women. Among participants with progressive disease stages (n = 660), BAs underwent early changes in men, occurring before AD. By incorporating BA features into diagnostic and predictive models, positive enhancements are achieved for all models. The area under the receiver operating characteristic curve improved from 0.78 to 0.91 for men and from 0.76 to 0.83 for women for the differentiation of CN and AD. Additionally, the key findings are validated in a subset of participants (n = 578) with cerebrospinal fluid amyloid-beta and tau levels. These findings underscore the role of BAs in AD progression, offering potential improvements in the accuracy of AD prediction.