- Browse by Author
Browsing by Author "Ma, S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item O6-methylguanine-DNA-methyltransferase expression and gene polymorphisms in relation to chemotherapeutic response in metastatic melanoma(Springer, 2003-10) Ma, S.; Egyházi, S.; Ueno, T.; Lindholm, C.; Kreklau, E. L.; Stierner, U.; Ringborg, U.; Hansson, J.; Pharmacology and Toxicology, School of MedicineIn a retrospective study, O6-methylguanine-DNA-methyltransferase (MGMT) expression was analysed by immunohistochemistry using monoclonal human anti-MGMT antibody in melanoma metastases in patients receiving dacarbazine (DTIC) as single-drug therapy or as part of combination chemotherapy with DTIC–vindesine or DTIC–vindesine–cisplatin. The correlation of MGMT expression levels with clinical response to chemotherapy was investigated in 79 patients with metastatic melanoma. There was an inverse relationship between MGMT expression and clinical response to DTIC-based chemotherapy (P=0.05). Polymorphisms in the coding region of the MGMT gene were also investigated in tumours from 52 melanoma patients by PCR/SSCP and nucleotide sequence analyses. Single-nucleotide polymorphisms (SNPs) in exon 3 (L53L and L84F) and in exon 5 (I143V/K178R) were identified. There were no differences in the frequencies of these polymorphisms between these melanoma patients and patients with familial melanoma or healthy Swedish individuals. Functional analysis of variants MGMT-I143V and -I143V/K178R was performed by in vitro mutagenesis in Escherichia coli. There was no evidence that these variants decreased the MGMT DNA repair activity compared to the wild-type protein. All melanoma patients with the MGMT 53/84 polymorphism except one had tumours with high MGMT expression. There was no significant correlation between any of the MGMT polymorphisms and clinical response to chemotherapy, although an indication of a lower response rate in patients with SNPs in exon 5 was obtained. Thus, MGMT expression appears to be more related to response to chemotherapy than MGMT polymorphisms in patients with metastatic melanoma.Item Sex-Specific Skeletal Muscle Gene Expression Responses to Exercise Reveal Novel Direct Mediators of Insulin Sensitivity Change(medRxiv, 2024-09-08) Ma, S.; Morris, M. C.; Hubal, M. J.; Ross, L. M.; Huffman, K. M.; Vann, C. G.; Moore, N.; Hauser, E. R.; Bareja, A.; Jiang, R.; Kummerfeld, E.; Barberio, M. D.; Houmard, J. A.; Bennett, W. B.; Johnson, J. L.; Timmons, J. A.; Broderick, G.; Kraus, V. B.; Aliferis, C. F.; Kraus, W. E.; Exercise & Kinesiology, School of Health and Human SciencesBackground: Understanding the causal pathways, systems, and mechanisms through which exercise impacts human health is complex. This study explores molecular signaling related to whole-body insulin sensitivity (Si) by examining changes in skeletal muscle gene expression. The analysis considers differences by biological sex, exercise amount, and exercise intensity to identify potential molecular targets for developing pharmacologic agents that replicate the health benefits of exercise. Methods: The study involved 53 participants from the STRRIDE I and II trials who completed eight months of aerobic training. Skeletal muscle gene expression was measured using Affymetrix and Illumina technologies, while pre- and post-training Si was assessed via an intravenous glucose tolerance test. A novel gene discovery protocol, integrating three literature-derived and data-driven modeling strategies, was employed to identify causal pathways and direct causal factors based on differentially expressed transcripts associated with exercise intensity and amount. Results: In women, the transcription factor targets identified were primarily influenced by exercise amount and were generally inhibitory. In contrast, in men, these targets were driven by exercise intensity and were generally activating. Transcription factors such as ATF1, CEBPA, BACH2, and STAT1 were commonly activating in both sexes. Specific transcriptional targets related to exercise-induced Si improvements included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key signaling pathways mediating aerobic exercise-induced Si improvements were identified: one centered on estrogen signaling and the other on phorbol ester (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. Conclusions: The signaling pathways mediating Si improvements from aerobic exercise differed by sex and were further distinguished by exercise intensity and amount. Transcriptional adaptations in skeletal muscle related to Si improvements appear to be causally linked to estrogen and PKC signaling, with EGFR and other identified targets emerging as potential skeletal muscle-specific drug targets to mimic the beneficial effects of exercise on Si.