- Browse by Author
Browsing by Author "Ma, Lu"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts(American Chemical Society, 2024) Zhao, Xueru; Cheng, Hao; Chen, Xiaobo; Zhang, Qi; Li, Chenzhao; Xie, Jian; Marinkovic, Nebojsa; Ma, Lu; Zheng, Jin-Cheng; Sasaki, Kotaro; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyThe development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.