- Browse by Author
Browsing by Author "Lupov, Ivan P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item EFFECTS OF TYPE VI COLLAGEN ON MACROPHAGES(Office of the Vice Chancellor for Research, 2011-04-08) Voiles, Larry; Han, Ling; Lupov, Ivan P.; Anderson, Bailey; Melnikov, Lonya; Pottratz, Sarah Marie; Chang, Hua-ChenEmphysema is an abnormal inflammatory response of the alveoli that lose their elasticity due to destruction of alveolar septi. Collagen, an extracellular matrix protein (ECM), is expressed in the lung, which is important in maintaining the integrity of the tissue. Destruction of the ECM components in the alveolar structure contributes to the development of emphysema. We have found that the gene expression of type VI collagen (COL6A1) is higher in the lungs of emphysema patients as compared to that from normal controls. Type VI collagen (COL6) is found in the pulmonary interstitial compartment where massive macrophages are infiltrated in the inflammatory environment. The hypothesis is that excessive COL6 activates macrophages to mediate inflammatory responses, which may contribute to the pathogenesis of emphysema. The goal is to define the effects of type VI collagen on macrophages. Results from murine bone marrow derived macrophages showed a marked increase in the numbers of CD86-positive cells after soluble COL6 stimulation. To further support the stimulatory function of COL6, human THP-1 cells as well as primary monocytes produced inflammatory cytokines IL-12 and IFNγ following COL6 stimulation. Taken together, our data has demonstrated the stimulatory effects on macrophages by COL6 stimulation, which may mediate the inflammatory responses in the pathogenesis of emphysema.Item Overexpression of type VI collagen in neoplastic lung tissues(Spandidos, 2014-08) Voiles, Larry; Lewis, David E.; Han, Ling; Lupov, Ivan P.; Lin, Tsang-Long; Robertson, Michael J.; Petrache, Irina; Chang, Hua-Chen; Department of Biology, IU School of ScienceType VI collagen (COL6), an extracellular matrix protein, is important in maintaining the integrity of lung tissue. An increase in COL6 mRNA and protein deposition was found in the lungs of patients with pulmonary fibrosis, a chronic inflammatory condition with a strong association with lung cancer. In the present study, we demonstrated overexpression of COL6 in the lungs of non-small cell lung cancers. We hypothesized that excessive COL6 in the lung interstitium may exert stimulatory effects on the adjacent cells. In vitro stimulation of monocytes with COL6 resulted in the production of IL-23, which may promote tumor development in an environment of IL-23-mediated lung inflammation, where tissue modeling occurs concurrently with excessive COL6 production. In addition, COL6 was capable of stimulating signaling pathways that activate focal adhesion kinase and extracellular signal‑regulated kinase 1/2 in lung epithelial cells, which may also facilitate the development of lung neoplasms. Taken together, our data suggest the potential role of COL6 in promoting lung neoplasia in diseased lungs where COL6 is overexpressed.