- Browse by Author
Browsing by Author "Lundgren, Markus"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes(Springer, 2024-09) Phillip, Moshe; Achenbach, Peter; Addala, Ananta; Albanese-O'Neill, Anastasia; Battelino, Tadej; Bell, Kirstine J.; Besser, Rachel E. J.; Bonifacio, Ezio; Colhoun, Helen M.; Couper, Jennifer J.; Craig, Maria E.; Danne, Thomas; de Beaufort, Carine; Dovc, Klemen; Driscoll, Kimberly A.; Dutta, Sanjoy; Ebekozien, Osagie; Elding Larsson, Helena; Feiten, Daniel J.; Frohnert, Brigitte I.; Gabbay, Robert A.; Gallagher, Mary P.; Greenbaum, Carla J.; Griffin, Kurt J.; Hagopian, William; Haller, Michael J.; Hendrieckx, Christel; Hendriks, Emile; Holt, Richard I. G.; Hughes, Lucille; Ismail, Heba M.; Jacobsen, Laura M.; Johnson, Suzanne B.; Kolb, Leslie E.; Kordonouri, Olga; Lange, Karin; Lash, Robert W.; Lernmark, Åke; Libman, Ingrid; Lundgren, Markus; Maahs, David M.; Marcovecchio, M. Loredana; Mathieu, Chantal; Miller, Kellee M.; O'Donnell, Holly K.; Oron, Tal; Patil, Shivajirao P.; Pop-Busui, Rodica; Rewers, Marian J.; Rich, Stephen S.; Schatz, Desmond A.; Schulman-Rosenbaum, Rifka; Simmons, Kimber M.; Sims, Emily K.; Skyler, Jay S.; Smith, Laura B.; Speake, Cate; Steck, Andrea K.; Thomas, Nicholas P. B.; Tonyushkina, Ksenia N.; Veijola, Riitta; Wentworth, John M.; Wherrett, Diane K.; Wood, Jamie R.; Ziegler, Anette-Gabriele; DiMeglio, Linda A.; Pediatrics, School of MedicineGiven the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.Item Correction to: Consensus guidance for monitoring individuals with islet autoantibody‑positive pre‑stage 3 type 1 diabetes(Springer, 2024) Phillip, Moshe; Achenbach, Peter; Addala, Ananta; Albanese-O'Neill, Anastasia; Battelino, Tadej; Bell, Kirstine J.; Besser, Rachel E. J.; Bonifacio, Ezio; Colhoun, Helen M.; Couper, Jennifer J.; Craig, Maria E.; Danne, Thomas; de Beaufort, Carine; Dovc, Klemen; Driscoll, Kimberly A.; Dutta, Sanjoy; Ebekozien, Osagie; Elding Larsson, Helena; Feiten, Daniel J.; Frohnert, Brigitte I.; Gabbay, Robert A.; Gallagher, Mary P.; Greenbaum, Carla J.; Griffin, Kurt J.; Hagopian, William; Haller, Michael J.; Hendrieckx, Christel; Hendriks, Emile; Holt, Richard I. G.; Hughes, Lucille; Ismail, Heba M.; Jacobsen, Laura M.; Johnson, Suzanne B.; Kolb, Leslie E.; Kordonouri, Olga; Lange, Karin; Lash, Robert W.; Lernmark, Åke; Libman, Ingrid; Lundgren, Markus; Maahs, David M.; Marcovecchio, M. Loredana; Mathieu, Chantal; Miller, Kellee M.; O'Donnell, Holly K.; Oron, Tal; Patil, Shivajirao P.; Pop-Busui, Rodica; Rewers, Marian J.; Rich, Stephen S.; Schatz, Desmond A.; Schulman-Rosenbaum, Rifka; Simmons, Kimber M.; Sims, Emily K.; Skyler, Jay S.; Smith, Laura B.; Speake, Cate; Steck, Andrea K.; Thomas, Nicholas P. B.; Tonyushkina, Ksenia N.; Veijola, Riitta; Wentworth, John M.; Wherrett, Diane K.; Wood, Jamie R.; Ziegler, Anette-Gabriele; DiMeglio, Linda A.; Pediatrics, School of MedicineItem Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes(American Diabetes Association, 2020-01) Battaglia, Manuela; Ahmed, Simi; Anderson, Mark S.; Atkinson, Mark A.; Becker, Dorothy; Bingley, Polly J.; Bosi, Emanuele; Brusko, Todd M.; DiMeglio, Linda A.; Evans-Molina, Carmella; Gitelman, Stephen E.; Greenbaum, Carla J.; Gottlieb, Peter A.; Herold, Kevan C.; Hessner, Martin J.; Knip, Mikael; Jacobsen, Laura; Krischer, Jeffrey P.; Long, S. Alice; Lundgren, Markus; McKinney, Eoin F.; Morgan, Noel G.; Oram, Richard A.; Pastinen, Tomi; Peters, Michael C.; Petrelli, Alessandra; Qian, Xiaoning; Redondo, Maria J.; Roep, Bart O.; Schatz, Desmond; Skibinski, David; Peakman, Mark; Pediatrics, School of MedicineThe clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.Item Time to Peak Glucose and Peak C-Peptide During the Progression to Type 1 Diabetes in the Diabetes Prevention Trial and TrialNet Cohorts(ADA, 2021-10) Voss, Michael G.; Cleves, Mario M.; Cuthbertson, David D.; Xu, Ping; Evans-Molina, Carmella; Palmer, Jerry P.; Redondo, Maria J.; Steck, Andrea K.; Lundgren, Markus; Larsson, Helena; Moore, Wayne V.; Atkinson, Mark A.; Sosenko, Jay; Ismail, Heba M.; Pediatrics, School of MedicineObjective: To assess the progression of type 1 diabetes using time to peak glucose or C-peptide during oral glucose tolerance tests (OGTTs) in autoantibody positive (Ab+) relatives of people with type 1 diabetes. Methods: We examined 2-hour OGTTs of participants in the Diabetes Prevention Trial Type 1 (DPT-1) and TrialNet Pathway to Prevention (PTP) studies. We included 706 DPT-1 participants (Mean±SD age: 13.84±9.53 years; BMI-Z-Score: 0.33±1.07; 56.1% male) and 3,720 PTP participants (age: 16.01±12.33 Years, BMI-Z-Score 0.66±1.3; 49.7% male). Log-rank testing and Cox regression analyses with adjustments (age, sex, race, BMI-Z-Score and peak Glucose/Cpeptide levels, respectively) were performed. Results: In each of DPT-1 and PTP, higher 5-year risk of diabetes development was seen in those with time to peak glucose >30 min and time to peak C-peptide >60 min (p<0.001 for all groups), before and after adjustments. In models examining strength of association with diabetes development, associations were greater for time to peak C-peptide versus peak C-peptide value (DPT-1: X2 = 25.76 vs. X2 = 8.62 and PTP: X2 = 149.19 vs. X2 = 79.98; all p<0.001). Changes in the percentage of individuals with delayed glucose and/or C-peptide peaks were noted over time. Conclusions: In two independent at risk populations, we show that those with delayed OGTT peak times for glucose or C-peptide are at higher risk of diabetes development within 5 years, independent of peak levels. Moreover, time to peak C-peptide appears more predictive than the peak level, suggesting its potential use as a specific biomarker for diabetes progression.