- Browse by Author
Browsing by Author "Lund, Melvin R, 1922-"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item The effect of filler on the mechanical properties of a novel resin-based calcium phosphate cement(2010) Al Dehailan, Laila; Chu, Tien-Min Gabriel; Lund, Melvin R, 1922-; Cochran, Michael A. (Michael Alan), 1944-; Martinez Mier, Esperanza de los A. (Esperanza de los Angeles), 1967-; Cook, Norman Blaine, 1954-Several studies have found that resin-based amorphous calcium phosphate (ACP) composites can function well for applications that do not require high mechanical demand. Milled tricalcium phosphate (TCP), a new calcium-phosphate-releasing material, is crystalline in nature, suggesting it to be strong. In the present study, we investigated the use of a TCP-filled composite resin as a possible tooth restorative-material. An experimental TCP-based composite was prepared using monomer with a mixture of 34.3 percent by mass of EBPADMA, 34.2 percent by mass of HmDMA, and 30.5 percent by mass of HEMA. TCP fillers were added to the monomer mixture at different levels (30 percent, 40 percent, 50 percent, and 60 percent by weight). A universal testing machine (Sintech Renew 1121; Instron Engineering Corp., Canton, MA) was used to measure the compressive strength and modulus. FTIR was used to measure the degree of conversion. The depth of cure was determined according to the ISO standards for dental resin 4049 using the scrapping technique. Knoop hardness numbers were obtained by a microhardness tester (M-400; Leco Co., St. Joseph, MI). The viscosities of the experimental resin were determined in a viscometer (DV-II+ Viscometer; Brookfield, Middleboro, MA). The data were analyzed using a one-way analysis of variance (ANOVA). A 5-percent significance level was used for all the tests. Resin composites with 30-percent TCP filler showed the highest compressive strength and hardness values. Also, this group showed the lowest degree of conversion. Resin composites with 60-percent TCP filler showed the highest degree of conversion. However, this group showed the lowest compressive strength, depth of cure, and hardness. Resin composites with 50-percent filler showed the highest compressive modulus. Resin composites with 40-percent filler showed higher viscosity values than resin composites with 30-percent filler. In conclusion, increasing the filler level significantly reduced the compressive strength, hardness, and depth of cure, but increased the degree of conversion. Also, resin composites with the lowest filler level (30 percent) had the highest compressive strength, depth of cure, and hardness. From these results, it can be concluded that the experimental TCP-filled resin used in this study cannot be used as restorative material.