ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ludwig, Nora"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dihydroceramides Derived from Bacteroidetes Species Sensitize TRPV1 Channels
    (MDPI, 2023-01-03) Ludwig, Nora; Demaree, Isaac S.; Yamada, Chiaki; Nusbaum, Amilia; Nichols, Frank C.; White, Fletcher A.; Movila, Alexandru; Obukhov, Alexander G.; Anatomy, Cell Biology and Physiology, School of Medicine
    Bacterial colonization of open wounds is common, and patients with infected wounds often report significantly elevated pain sensitivity at the wound site. Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels are known to play an important role in pain signaling and may be sensitized under pro-inflammatory conditions. Bacterial membrane components, such as phosphoethanolamine dihydroceramide (PEDHC), phosphoglycerol dihydroceramide (PGDHC), and lipopolysaccharide (LPS), are released in the environment from the Gram-negative bacteria of the Bacteroidetes species colonizing the infected wounds. Here, we used intracellular calcium imaging and patch-clamp electrophysiology approaches to determine whether bacterially derived PEDHC, PGDHC, or LPS can modulate the activity of the TRPV1 channels heterologously expressed in HEK cells. We found that PEDHC and PGDHC can sensitize TRPV1 in a concentration-dependent manner, whereas LPS treatment does not significantly affect TRPV1 activity in HEK cells. We propose that sensitization of TRPV1 channels by Bacteroidetes-derived dihydroceramides may at least in part underlie the increased pain sensitivity associated with wound infections.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University