- Browse by Author
Browsing by Author "Lucas, Emily"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke(American Heart Association, 2019-08-22) Hornby, T. George; Henderson, Christopher E.; Plawecki, Abbey; Lucas, Emily; Lotter, Jennifer; Holthus, Molly; Brazg, Gabrielle; Fahey, Meghan; Woodward, Jane; Ardestani, Marzieh; Roth, Elliot J.; Physical Medicine and Rehabilitation, School of MedicineBackground and Purpose: The amount of task-specific stepping practice provided during rehabilitation post-stroke can influence locomotor recovery, and reflects one aspect of exercise “dose” that can affect the efficacy of specific interventions. Emerging data suggest that markedly increasing the intensity and variability of stepping practice may also be critical, although such strategies are discouraged during traditional rehabilitation. The goal of this study was to determine the individual and combined contributions of intensity and variability of stepping practice to improving walking speed and distance in individuals post-stroke. Methods: This Phase 2, randomized, blinded assessor clinical trial was performed between May 2015-November 2018. Individuals between 18-85 years old with hemiparesis post-stroke of >6 months duration were recruited. Of the 152 individuals screened, 97 were randomly assigned to 1 of 3 training groups, with 90 completing >10 sessions. Interventions consisted of either high intensity stepping (70-80% heart rate [HR] reserve) of variable, difficult stepping tasks (high-variable), high intensity stepping performing only forward walking (high-forward), and low intensity stepping in variable contexts at 30-40% HR reserve (low-variable). Participants received up to 30 sessions over 2 months, with testing at baseline, post-training and a 3-month follow-up. Primary outcomes included walking speeds and timed distance, with secondary measures of dynamic balance, transfers, spatiotemporal kinematics and metabolic measures. Results: All walking gains were significantly greater following either high-intensity group vs low-variable training (all p<0.001) with significant correlations with stepping amount and rate (r=0.48-60; p<0.01). Additional gains in spatiotemporal symmetry were observed with high-intensity training, and balance confidence increased only following high-variable training in individuals with severe impairments. Conclusion: High intensity stepping training resulted in greater improvements in walking ability and gait symmetry than low-intensity training in individuals with chronic stroke, with potential greater improvements in balance confidence.Item Gains in Daily Stepping Activity in People With Chronic Stroke After High-Intensity Gait Training in Variable Contexts(Oxford University Press, 2022) Hornby, T. George; Plawecki, Abbey; Lotter, Jennifer K.; Scofield, Molly E.; Lucas, Emily; Henderson, Christopher E.; Physical Medicine and Rehabilitation, School of MedicineObjective: Many physical therapist interventions provided to individuals with chronic stroke can lead to gains in gait speed or endurance (eg, 6-Minute Walk Test [6MWT]), although changes in objective measures of participation are not often observed. The goal of this study was to determine the influence of different walking interventions on daily stepping (steps per day) and the contributions of demographic, training, and clinical measures to these changes. Methods: In this secondary analysis of a randomized clinical trial, steps per day at baseline and changes in steps per day following 1 of 3 locomotor interventions were evaluated in individuals who were ambulatory and >6 months after stroke. Data were collected on 58 individuals who received ≤30 sessions of high-intensity training (HIT) in variable contexts (eg, tasks and environments; n = 19), HIT focused on forward walking (n = 19), or low-intensity variable training (n = 20). Primary outcomes were steps per day at baseline, at post-training, and at a 3-month follow-up, and secondary outcomes were gait speed, 6MWT, balance, and balance confidence. Correlation and regression analyses identified demographic and clinical variables associated with steps per day. Results: Gains in steps per day were observed across all groups combined, with no between-group differences; post hoc within-group analyses revealed significant gains only following HIT in variable contexts. Both HIT groups showed gains in endurance (6MWT), with increases in balance confidence only following HIT in variable contexts. Changes in steps per day were associated primarily with gains in 6MWT, with additional associations with baseline 6MWT, lower-extremity Fugl-Meyer scores, and changes in balance confidence. Conclusion: HIT in variable contexts elicited gains in daily stepping, with changes primarily associated with gains in gait endurance. Impact: Providing HIT in variable contexts appears to improve measures of participation (eg, daily stepping) that may be associated with clinical measures of function. Gains in multiple measures of mobility and participation with HIT in variable contexts may improve the efficiency and value of physical therapy services.Item Increasing the Amount and Intensity of Stepping Training During Inpatient Stroke Rehabilitation Improves Locomotor and Non-Locomotor Outcomes(Sage, 2022) Henderson, Christopher E.; Plawecki, Abbey; Lucas, Emily; Lotter, Jennifer K.; Scofield, Molly; Carbone, Angela; Jang, Jeong H.; Hornby, T. George Hornby; FIRST-Indiana team; Baumgartner, Christina; Breuninger, William; England, Emily; Keys, Amanda; Meier, Jennifer; Nobbe, Carolyn; Pylitt, Alison; Shoger, Lindsay; Wilkie, Kelly; Physical Medicine and Rehabilitation, School of MedicineBackground: The efficacy of traditional rehabilitation interventions to improve locomotion post-stroke, including providing multiple exercises targeting impairments and activity limitations, is uncertain. Emerging evidence rather suggests attempts to prioritize stepping practice at higher cardiovascular intensities may facilitate greater locomotor outcomes. Objective: The present study was designed to evaluate the comparative effectiveness of high-intensity training (HIT) to usual care during inpatient rehabilitation post-stroke. Methods: Changes in stepping activity and functional outcomes were compared over 9 months during usual-care (n = 131 patients < 2 months post-stroke), during an 18-month transition phase with attempts to implement HIT (n = 317), and over 12 months following HIT implementation (n = 208). The transition phase began with didactic and hands-on education, and continued with meetings, mentoring, and audit and feedback. Fidelity metrics included percentage of sessions prioritizing gait interventions and documenting intensity. Demographics, training measures, and outcomes were compared across phases using linear or logistic regression analysis, Kruskal-Wallis tests, or χ2 analysis. Results: Across all phases, admission scores were similar except for balance (usual-care>HIT; P < .02). Efforts to prioritize stepping and achieve targeted intensities during HIT vs transition or usual-care phases led to increased steps/day (P < .01). During HIT, gains in 10-m walk [HIT median = 0.13 m/s (interquartile range: 0-0.35) vs usual-care = 0.07 m/s (0-0.24), P = .01] and 6-min walk [50 (9.3-116) vs 2.1 (0-56) m, P < .01] were observed, with additional improvements in transfers and stair-climbing. Conclusions: Greater efforts to prioritize walking and reach higher intensities during HIT led to increased steps/day, resulting in greater gains in locomotor and non-locomotor outcomes.Item The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury(Elsevier, 2022) Fahey, Meghan; Brazg, Gabrielle; Henderson, Christopher E.; Plawecki, Abbey; Lucas, Emily; Reisman, Darcy S.; Schmit, Brian D.; Hornby, T. George; Physical Medicine and Rehabilitation, School of MedicineLong-standing research in animal models and humans with stroke or incomplete spinal cord injury (iSCI) indicate that specific physical training variables, such as the specificity and amount of practice, may influence neurologic recovery and locomotor function. More recent data highlight the contributions of exercise intensity, as estimated indirectly by cardiovascular exertion, as potentially more important than previously considered. The effects of exercise intensity are well described in neurologically intact individuals, although confusion regarding the definitions of intensity and safety concerns have limited its implementation during physical rehabilitation of patients with neurologic injury. The purpose of this review is to delineate some of the evidence regarding the effects of exercise intensity during locomotor training in patients with stroke and iSCI. We provide specific definitions of exercise intensity used within the literature, describe methods used to ensure appropriate levels of exertion, and discuss potential adverse events and safety concerns during its application. Further details on the effects of locomotor training intensity on clinical outcomes, and on neuromuscular and cardiovascular function will be addressed as available. Existing literature across multiple studies and meta-analyses reveals that exercise training intensity is likely a major factor that can influence locomotor function after neurologic injury. To extend these findings, we describe previous attempts to implement moderate to high intensity interventions during physical rehabilitation of patients with neurologic injury, including the utility of specific strategies to facilitate implementation, and to navigate potential barriers that may arise during implementation efforts.