- Browse by Author
Browsing by Author "Lowery, Jonathan W."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Dysfunctional stem and progenitor cells impair fracture healing with age(Baishideng Publishing Group, 2019-06-26) Wagner, Diane R.; Karnik, Sonali; Gunderson, Zachary J.; Nielsen, Jeffery J.; Fennimore, Alanna; Promer, Hunter J.; Lowery, Jonathan W.; Loghmani, M. Terry; Low, Philip S.; McKinley, Todd O.; Kacena, Melissa A.; Clauss, Matthias; Li, Jiliang; Orthopaedic Surgery, IU School of MedicineSuccessful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.Item Editorial: Genetic and molecular determinants in bone health and diseases(Frontiers Media, 2024-01-17) Rossi, Michela; Lowery, Jonathan W.; Del Fattore, Andrea; Orthopaedic Surgery, School of MedicineItem Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats(MDPI, 2023-03-31) Born-Evers, Gabriella; Orr, Ashley L.; Hulsey, Elizabeth Q.; Squire, Maria E.; Hum, Julia M.; Plotkin, Lilian; Sampson, Catherine; Hommel, Jonathan; Lowery, Jonathan W.; Anatomy, Cell Biology and Physiology, School of MedicineGlobal loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical locations including the skeleton and the hypothalamus. This raises the possibility that NMU exerts indirect effects on bone remodeling from an extra-skeletal location such as the brain. Thus, in the present study we used microinjection to deliver viruses carrying short-hairpin RNA designed to knockdown Nmu expression in the hypothalamus of 8-week-old male rats and evaluated the effects on bone mass in the peripheral skeleton. Quantitative RT-PCR confirmed approximately 92% knockdown of Nmu in the hypothalamus. However, after six weeks, micro computed tomography on tibiae from Nmu-knockdown rats demonstrated no significant change in trabecular or cortical bone mass as compared to controls. These findings are corroborated by histomorphometric analyses which indicate no differences in osteoblast or osteoclast parameters between controls and Nmu-knockdown samples. Collectively, these data suggest that hypothalamus-derived NMU does not regulate bone remodeling in the postnatal skeleton. Future studies are necessary to delineate the direct versus indirect effects of NMU on bone remodeling.Item Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption(Springer, 2018-02) Eaton, Michael S.; Weinstein, Nicholas; Newby, Jordan B.; Plattes, Maggie M.; Foster, Hanna E.; Arthur, Jon W.; Ward, Taylor D.; Shively, Stephen R.; Shor, Ryann; Nathan, Justin; Davis, Hannah M.; Plotkin, Lilian I.; Wauson, Eric M.; Dewar, Brian J.; Broege, Aaron; Lowery, Jonathan W.; Anatomy and Cell Biology, School of MedicineThe taste receptor type 1 (TAS1R) family of heterotrimeric G protein-coupled receptors participates in monitoring energy and nutrient status. TAS1R member 3 (TAS1R3) is a bi-functional protein that recognizes amino acids such as L-glycine and L-glutamate or sweet molecules such as sucrose and fructose when dimerized with TAS1R member 1 (TAS1R1) or TAS1R member 2 (TAS1R2), respectively. It was recently reported that deletion of TAS1R3 expression in Tas1R3 mutant mice leads to increased cortical bone mass but the underlying cellular mechanism leading to this phenotype remains unclear. Here, we independently corroborate the increased thickness of cortical bone in femurs of 20-week-old male Tas1R3 mutant mice and confirm that Tas1R3 is expressed in the bone environment. Tas1R3 is expressed in undifferentiated bone marrow stromal cells (BMSCs) in vitro and its expression is maintained during BMP2-induced osteogenic differentiation. However, levels of the bone formation marker procollagen type I N-terminal propeptide (PINP) are unchanged in the serum of 20-week-old Tas1R3 mutant mice as compared to controls. In contrast, levels of the bone resorption marker collagen type I C-telopeptide are reduced greater than 60% in Tas1R3 mutant mice. Consistent with this, Tas1R3 and its putative signaling partner Tas1R2 are expressed in primary osteoclasts and their expression levels positively correlate with differentiation status. Collectively, these findings suggest that high bone mass in Tas1R3 mutant mice is due to uncoupled bone remodeling with reduced osteoclast function and provide rationale for future experiments examining the cell-type-dependent role for TAS1R family members in nutrient sensing in postnatal bone remodeling.Item Mechanical stimulation of human dermal fibroblasts regulates pro-inflammatory cytokines: potential insight into soft tissue manual therapies(BMC, 2020) Anloague, Aric; Mahoney, Aaron; Ogunbekun, Oladipupo; Hiland, Taylor A.; Thompson, William R.; Larsen, Bryan; Loghmani, M. Terry; Hum, Julia M.; Lowery, Jonathan W.; Physical Therapy, School of Health and Rehabilitation SciencesObjective Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. Results Using cultures of primary human dermal fibroblasts, we confirm cyclical mechanical strain increases levels of IL-6 and adding long-duration stretch, intended to mimic therapeutic soft tissue stimulation, after cyclical strain results in lower IL-6 levels. We also extend the prior work, reporting that long-duration stretch results in lower levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue stimulation may reduce levels of pro-inflammatory cytokines. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.Item Mechanical stimulation of human dermal fibroblasts regulates pro-inflammatory cytokines: potential insight into soft tissue manual therapies(BMC, 2020-08-27) Anloague, Aric; Mahoney, Aaron; Ogunbekun, Oladipupo; Hiland, Taylor A.; Thompson, William R.; Larsen, Bryan; Loghmani, M. Terry; Hum, Julia M.; Lowery, Jonathan W.; Physical Therapy, School of Health and Human SciencesSoft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results.Item NMUR1 in the NMU-Mediated Regulation of Bone Remodeling(MDPI, 2021-09-29) Hsiao, Yu-Tin; Manikowski, Kelli J.; Snyder, Samantha; Griffin, Nicole; Orr, Ashley L.; Hulsey, Elizabeth Q.; Born-Evers, Gabriella; Zukosky, Tara; Squire, Maria E.; Hum, Julia M.; Metzger, Corinne E.; Allen, Matthew R.; Lowery, Jonathan W.; Anatomy, Cell Biology and Physiology, School of MedicineNeuromedin-U (NMU) is an evolutionarily conserved peptide that regulates varying physiologic effects including blood pressure, stress and allergic responses, metabolic and feeding behavior, pain perception, and neuroendocrine functions. Recently, several lines of investigation implicate NMU in regulating bone remodeling. For instance, global loss of NMU expression in male and female mice leads to high bone mass due to elevated bone formation rate with no alteration in bone resorption rate or observable defect in skeletal patterning. Additionally, NMU treatment regulates the activity of osteoblasts in vitro. The downstream pathway utilized by NMU to carry out these effects is unknown as NMU signals via two G-protein-coupled receptors (GPCRs), NMU receptor 1 (NMUR1), and NMU receptor 2 (NMUR2), and both are expressed in the postnatal skeleton. Here, we sought to address this open question and build a better understanding of the downstream pathway utilized by NMU. Our approach involved the knockdown of Nmur1 in MC3T3-E1 cells in vitro and a global knockout of Nmur1 in vivo. We detail specific cell signaling events (e.g., mTOR phosphorylation) that are deficient in the absence of NMUR1 expression yet trabecular bone volume in femora and tibiae of 12-week-old male Nmur1 knockout mice are unchanged, compared to controls. These results suggest that NMUR1 is required for NMU-dependent signaling in MC3T3-E1 cells, but it is not required for the NMU-mediated effects on bone remodeling in vivo. Future studies examining the role of NMUR2 are required to determine the downstream pathway utilized by NMU to regulate bone remodeling in vivo.Item PTHrP intracrine actions divergently influence breast cancer growth through p27 and LIFR(Springer Nature, 2024-02-26) Edwards, Courtney M.; Kane, Jeremy F.; Smith, Jailyn A.; Grant, Déja M.; Johnson, Jasmine A.; Hernandez Diaz, Maria A.; Vecchi, Lawrence A., III; Bracey, Kai M.; Omokehinde, Tolu N.; Fontana, Joseph R.; Karno, Breelyn A.; Scott, Halee T.; Vogel, Carolina J.; Lowery, Jonathan W.; Martin, T. John; Johnson, Rachelle W.; Orthopaedic Surgery, School of MedicineThe role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR). Induction of p27 by PTHrP lacking the NLS and C-terminus persisted in bone disseminated cells, but did not prevent metastatic outgrowth, in contrast to the primary tumor site. These data suggest that the PTHrP NLS functions as a tumor suppressor, while the PTHrP C-terminus may act as an oncogenic switch to promote tumor progression through differential regulation of p27 signaling.