- Browse by Author
Browsing by Author "Lou, Yongliang"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item BadR directly represses the expression of the glycerol utilization operon in the Lyme disease pathogen(American Society for Microbiology, 2024) Zhang, Jun-Jie; Raghunandanan, Sajith; Wang, Qian; Priya, Raj; Alanazi, Fuad; Lou, Yongliang; Yang, X. Frank; Microbiology and Immunology, School of MedicineGlycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.Item Blood Biomarkers of Intestinal Epithelium Damage Regenerating Islet-derived Protein 3α and Trefoil Factor 3 Are Persistently Elevated in Patients with Alcoholic Hepatitis(Wiley, 2021) Yang, Jing; Syed, Fahim; Xia, Ying; Sanyal, Arun; Shah, Vijay; Chalasani, Naga; Zheng, Xiaoqun; Yu, Qigui; Lou, Yongliang; Li, Wei; Microbiology and Immunology, School of MedicineBackground: Heavy alcohol consumption disrupts gut epithelial integrity, leading to increased permeability of the gastrointestinal tract and subsequent translocation of microbes. Regenerating islet-derived protein 3α (REG3α) and Trefoil factor 3 (TFF3) are mainly secreted to the gut lumen by Paneth and Goblet cells, respectively, and are functionally linked to gut barrier integrity. Circulating levels of REG3α and TFF3 have been identified as biomarkers for gut damage in several human diseases. We examined whether plasma levels of REG3α and TFF3 were dysregulated and correlated with conventional markers of microbial translocation (MT) and pro-inflammatory mediators in heavy drinkers with and without alcoholic hepatitis (AH). Methods: Cross-sectional and longitudinal studies were performed to monitor plasma levels of REG3α and TFF3 in 79 AH patients, 66 heavy drinkers without liver disease (HDC), and 46 healthy controls (HC) at enrollment and at 6- and 12-month follow-ups. Spearman correlation was used to measure the relationships of REG3α and TFF3 levels with MT, disease severity, inflammation, and effects of abstinence from alcohol. Results: At enrollment, AH patients had significantly higher levels of REG3α and TFF3 than HDC and HC. The elevated REG3α levels were positively correlated with the 30-day fatality rate. Plasma levels of REG3α and TFF3 in AH patients differentially correlated with conventional MT markers (sCD14, sCD163, and LBP) and several highly up-regulated inflammatory cytokines/chemokines/growth factors. At follow-ups, although REG3α and TFF3 levels were decreased in AH patients with alcohol abstinence, they did not fully return to baseline levels. Conclusions: Circulating levels of REG3α and TFF3 were highly elevated in AH patients and differentially correlated with AH disease severity, MT, and inflammation, thereby serving as potential biomarkers of MT and gut epithelial damage in AH patients.Item Borrelia burgdorferi Secretes c-di-AMP as an Extracellular Pathogen-Associated Molecular Pattern to Elicit Type I Interferon Responses in Mammalian Hosts(bioRxiv, 2024-08-20) Priya, Raj; Ye, Meiping; Raghunanadanan, Sajith; Liu, Qiang; Li, Wei; Lou, Yongliang; Sintim, Herman O.; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi (B. burgdorferi), an extracellular spirochetal pathogen, elicits a type-I interferon (IFN-I) response that contributes to the pathology of Lyme disease, including the development and severity of Lyme arthritis. However, the specific Pathogen-Associated Molecular Patterns (PAMPs) of B. burgdorferi responsible for triggering the IFN-I response are not well understood. Previous studies have identified an unknown, nuclease-resistant component in B. burgdorferi culture supernatants that significantly stimulates the IFN-I response, but its identity remains unknown. In this study, we reveal that B. burgdorferi secretes cyclic-di-adenosine monophosphate (c-di-AMP) as a key extracellular PAMP, inducing the host IFN-I response in macrophages. Using genetically manipulated B. burgdorferi strains, we demonstrate a requirement of c-di-AMP for stimulating IFN-I response by macrophages ex vivo. Additionally, infecting mice with B. burgdorferi alongside exogenous c-di-AMP resulted in a markedly increased IFN-I response in mouse tissues. Furthermore, inactivation or inhibition of the host STING signaling pathway significantly reduced the IFN-I response, indicating that c-di-AMP-induced IFN-I production is STING-dependent. Our findings identify c-di-AMP as a crucial PAMP secreted by B. burgdorferi to elicit the host IFN-I response via activation of STING signaling pathway, suggesting that targeting c-di-AMP production could represent a novel therapeutic strategy against Lyme arthritis.Item Corrigendum: Role of HK2 in the Enzootic Cycle of Borrelia burgdorferi(Frontiers Media, 2021-03-31) Liu, Qiang; Xu, Haijun; Zhang, Yan; Yang, Jing; Du, Jimei; Zhou, Yan; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineItem DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence(ASM, 2014-05) Ye, Meiping; Zhang, Jun-Jie; Fang, Xin; Lawlis, Gavin B.; Troxell, Bryan; Zhou, Yan; Gomelsky, Mark; Lou, Yongliang; Yang, X. Frank; Department of Microbiology and Immunology, IU School of MedicineCyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence.Item Genome reduction of Borrelia burgdorferi: two TCS signaling pathways for two distinct host habitats(Springer, 2016-01) Ye, Meiping; Zhou, Yan; Lou, Yongliang; Yang, X. Frank; Department of Microbiology and Immunology, IU School of MedicineItem HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts(American Society for Microbiology, 2016-07) Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A.; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X. Frank; Pal, Utpal; Department of Microbiology and Immunology, IU School of MedicineHigh-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity.Item Immune Checkpoint Axes Are Dysregulated in Patients With Alcoholic Hepatitis(Wiley Open Access:, 2020-01-12) Li, Wei; Xia, Ying; Yang, Jing; Guo, Haitao; Sun, Guoqing; Sanyal, Arun J.; Shah, Vijay H.; Lou, Yongliang; Zheng, Xiaoqun; Chalasani, Naga; Yu, Qigui; Microbiology and Immunology, School of MedicineAlcoholic hepatitis (AH) is a severe inflammatory liver disease that develops in some heavy drinkers. The immune system in patients with AH is hyperactive and yet dysfunctional. Here, we investigated whether this immune‐dysregulated state is related to the alcoholic impact on immune checkpoints (ICPs). We used multiplex immunoassays and enzyme‐linked immunosorbent assay to quantify plasma levels of 18 soluble ICPs (sICPs) from 81 patients with AH, 65 heavy drinkers without liver diseases (HDCs), and 39 healthy controls (HCs) at baseline, 33 patients with AH and 32 HDCs at 6‐month follow‐up, and 18 patients with AH and 29 HDCs at 12‐month follow‐up. We demonstrated that baseline levels of 6 sICPs (soluble T‐cell immunoglobulin and mucin domain 3 [sTIM‐3], soluble cluster of differentiation [sCD]27, sCD40, soluble Toll‐like receptor‐2 [sTLR‐2], soluble herpesvirus entry mediator [sHVEM], and soluble lymphotoxin‐like inducible protein that competes with glycoprotein D for herpes virus entry on T cells [sLIGHT]) were up‐regulated, while 11 sICPs (soluble B‐ and T‐lymphocyte attenuator [sBTLA], sCD160, soluble cytotoxic T‐lymphocyte‐associated protein 4 [sCTLA‐4], soluble lymphocyte‐activation gene 3 [sLAG‐3], soluble programmed death 1 [sPD‐1], sPD ligand 1 [sPD‐L1], sCD28, soluble glucocorticoid‐induced tumor necrosis factor receptor‐related protein [sGITR], sGITR ligand [sGITRL], sCD80, and inducible T‐cell costimulator [sICOS]) were down‐regulated in patients with AH compared to HDCs. The up‐regulated sICPs except sLIGHT and down‐regulated sCD80, sCD160, sCTLA‐4, and sLAG‐3 correlated positively or negatively with AH disease severity, bacterial translocation, and inflammatory factors. At follow‐up, abstinent patients with AH still had higher levels of several sICPs compared to HDCs. We also compared expression of 10 membrane‐bound ICPs (mICPs) on peripheral blood mononuclear cells (PBMCs) from patients with AH and HCs by flow cytometry and found that several mICPs were dysregulated on blood cells from patients with AH. The function and regulation of sICPs and mICPs were studied using PBMCs from patients with AH and HCs. Recombinant sHVEM affected tumor necrosis factor (TNF)‐α and interferon‐γ production by T cells from patients with AH and HCs. Conclusion: Both sICPs and mICPs were dysregulated in patients with AH, and alcohol abstinence did not fully reverse these abnormalities. The HVEM axis plays a role in regulating T‐cell function in patients with AH.Item Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi(American Society for Microbiology, 2016-05-15) Yin, Yanping; Yang, Youyun; Xiang, Xuwu; Wang, Qian; Yang, Zhang-Nv; Blevins, Jon; Lou, Yongliang; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineIt is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditional rrp2 mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ(54) activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression of rpoS is deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect on rpoS These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ(54), controlling an essential step of cell replication in B. burgdorferi IMPORTANCE: Bacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ(54)-dependent gene transcription. This work demonstrates that the B. burgdorferi bEBP, Rrp2, has an additional function that is independent of σ(54), that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.Item Investigation of ospC Expression Variation among Borrelia burgdorferi Strains(Frontiers, 2017-04-20) Xiang, Xuwu; Yang, Youyun; Du, Jimei; Lin, Tianyu; Chen, Tong; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineOuter surface protein C (OspC) is the most studied major virulence factor of Borrelia burgdorferi, the causative agent of Lyme disease. The level of OspC varies dramatically among B. burgdorferi strains when cultured in vitro, but little is known about what causes such variation. It has been proposed that the difference in endogenous plasmid contents among strains contribute to variation in OspC phenotype, as B. burgdorferi contains more than 21 endogenous linear (lp) and circular plasmids (cp), and some of which are prone to be lost. In this study, we analyzed several clones isolated from B. burgdorferi strain 297, one of the most commonly used strains for studying ospC expression. By taking advantage of recently published plasmid sequence of strain 297, we developed a multiplex PCR method specifically for rapid plasmid profiling of B. burgdorferi strain 297. We found that some commonly used 297 clones that were thought having a complete plasmid profile, actually lacked some endogenous plasmids. Importantly, the result showed that the difference in plasmid profiles did not contribute to the ospC expression variation among the clones. Furthermore, we found that B. burgdorferi clones expressed different levels of BosR, which in turn led to different levels of RpoS and subsequently, resulted in OspC level variation among B. burgdorferi strains.