- Browse by Author
Browsing by Author "Lorts, Angela"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genetic Testing in Pediatric Left Ventricular Noncompaction(American Heart Association, 2017-12) Miller, Erin M.; Hinton, Robert B.; Czosek, Richard; Lorts, Angela; Parrott, Ashley; Shikany, Amy R.; Ittenbach, Richard F.; Ware, Stephanie M.; Pediatrics, School of MedicineBackground: Left ventricular noncompaction (LVNC) can occur in isolation or can co-occur with a cardiomyopathy phenotype or cardiovascular malformation. The yield of cardiomyopathy gene panel testing in infants, children, and adolescents with a diagnosis of LVNC is unknown. By characterizing a pediatric population with LVNC, we sought to determine the yield of cardiomyopathy gene panel testing, distinguish the yield of testing for LVNC with or without co-occurring cardiac findings, and define additional factors influencing genetic testing yield. Methods and results: One hundred twenty-eight individuals diagnosed with LVNC at ≤21 years of age were identified, including 59% with idiopathic pathogenesis, 32% with familial disease, and 9% with a syndromic or metabolic diagnosis. Overall, 75 individuals had either cardiomyopathy gene panel (n=65) or known variant testing (n=10). The yield of cardiomyopathy gene panel testing was 9%. The severity of LVNC by imaging criteria was not associated with positive genetic testing, co-occurring cardiac features, pathogenesis, family history, or myocardial dysfunction. Individuals with isolated LVNC were significantly less likely to have a positive genetic testing result compared with those with LVNC and co-occurring cardiomyopathy (0% versus 12%, respectively; P<0.01). Conclusions: Genetic testing should be considered in individuals with cardiomyopathy co-occurring with LVNC. These data do not suggest an indication for cardiomyopathy gene panel testing in individuals with isolated LVNC in the absence of a family history of cardiomyopathy.Item Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy.(PNAS, 2015-06-09) Hathout, Yetrib; Brody, Edward; Clemens, Paula R.; Cripe, Linda; DeLisle, Robert Kirk; Furlong, Pat; Gordish- Dressman, Heather; Hache, Lauren; Henricson, Erik; Hoffman, Eric P.; Kobayashi, Yvonne Monique; Lorts, Angela; Mah, Jean K.; McDonald, Craig; Mehler, Bob; Nelson, Sally; Nikrad, Malti; Singer, Britta; Steele, Fintan; Sterling, David; Sweeney, H. Lee; Williams, Steve; Gold, Larry; Department of Cellular & Integrative Physiology, IU School of MedicineSerum biomarkers in Duchenne muscular dystrophy (DMD) may provide deeper insights into disease pathogenesis, suggest new therapeutic approaches, serve as acute read-outs of drug effects, and be useful as surrogate outcome measures to predict later clinical benefit. In this study a large-scale biomarker discovery was performed on serum samples from patients with DMD and age-matched healthy volunteers using a modified aptamer-based proteomics technology. Levels of 1,125 proteins were quantified in serum samples from two independent DMD cohorts: cohort 1 (The Parent Project Muscular Dystrophy-Cincinnati Children's Hospital Medical Center), 42 patients with DMD and 28 age-matched normal volunteers; and cohort 2 (The Cooperative International Neuromuscular Research Group, Duchenne Natural History Study), 51 patients with DMD and 17 age-matched normal volunteers. Forty-four proteins showed significant differences that were consistent in both cohorts when comparing DMD patients and healthy volunteers at a 1% false-discovery rate, a large number of significant protein changes for such a small study. These biomarkers can be classified by known cellular processes and by age-dependent changes in protein concentration. Our findings demonstrate both the utility of this unbiased biomarker discovery approach and suggest potential new diagnostic and therapeutic avenues for ameliorating the burden of DMD and, we hope, other rare and devastating diseases.Item TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury(PLOS, 2017-07-27) Schwanekamp, Jennifer A.; Lorts, Angela; Sargent, Michelle A.; York, Allen J.; Grimes, Kelly M.; Fischesser, Demetria M.; Gokey, Jason J.; Whitsett, Jeffrey A.; Conway, Simon J.; Molkentin, Jeffery D.; Pediatrics, School of MedicineExtracellular matrix production and accumulation stabilize the heart under normal conditions as well as form a protective scar after myocardial infarction injury, although excessive extracellular matrix accumulation with long-standing heart disease is pathological. In the current study we investigate the role of the matricellular protein, transforming growth factor beta-induced (TGFBI), which is induced in various forms of heart disease. Additionally, we sought to understand whether TGFBI is functionally redundant to its closely related family member periostin, which is also induced in the diseased heart. Surgical models of myocardial infarction and cardiac pressure overload were used in mice with genetic loss of Postn and/or Tgfbi to examine the roles of these genes during the fibrotic response. Additionally, cardiac-specific TGFBI transgenic mice were generated and analyzed. We observed that deletion of Tgfbi did not alter cardiac disease after myocardial infarction in contrast to greater ventricular wall rupture in Postn gene-deleted mice. Moreover, Tgfbi and Postn double gene-deleted mice showed a similar post-myocardial infarction disease phenotype as Postn-deleted mice. Over-expression of TGFBI in the hearts of mice had a similar effect as previously shown in mice with periostin over-expression. Thus, TGFBI and periostin act similarly in the heart in affecting fibrosis and disease responsiveness, although TGFBI is not seemingly necessary in the heart after myocardial infarction injury and is fully compensated by the more prominently expressed effector periostin.