- Browse by Author
Browsing by Author "Lopshire, John C."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies(Society for Neuroscience, 1998-08-15) Lopshire, John C.; Nicol, Grant D.; Pharmacology and Toxicology, School of MedicineTreatment with proinflammatory prostaglandin E2 (PGE2) produced a transient sensitization of whole-cell currents elicited by the vanilloid capsaicin. The intracellular signaling pathways that mediate the initiation of this PGE2-induced sensitization of the capsaicin-elicited current in rat sensory neurons are not well established. Treatment with either forskolin (100 nM to 10 microM) or membrane-permeant analogs of cAMP, 8-bromo-cAMP (8-Br-cAMP) and chlorphenylthio-cAMP (10 microM to 1 mM), transiently sensitized neuronal responses elicited by capsaicin in a manner analogous to that produced by PGE2. The duration of sensitization was lengthened with increasing concentrations of forskolin; however, higher concentrations of 8-Br-cAMP or chlorphenylthio-cAMP led to a shortening of sensitization. The inactive analog of forskolin, dideoxy-forskolin, had no effect on capsaicin responses. Inclusion of the inhibitor of protein kinase A in the recording pipette completely suppressed the sensitization produced by PGE2 or forskolin. In recordings from membrane patches in the cell-attached configuration, the bath application of capsaicin evoked single-channel currents in which the level of channel activity was concentration-dependent and had an EC50 of 1.4 microM. These single-channel currents evoked by capsaicin exhibited an apparent reversal potential of +4 mV and were blocked by the capsaicin antagonist capsazepine. Exposure of the sensory neuron to either PGE2 or forskolin produced a large and transient increase in the mean channel activity (NPo) elicited by capsaicin, although the unitary conductance remained unaltered. Taken together, these observations suggest that modulation of the capsaicin-gated channel by the cAMP-protein kinase A signaling pathway enhanced the gating of these channels and consequently resulted in the sensitization of the whole-cell currents.Item Chronic Low-Level Vagus Nerve Stimulation Reduces Stellate Ganglion Nerve Activity and Paroxysmal Atrial Tachyarrhythmias in Ambulatory Canines(Office of the Vice Chancellor for Research, 2011-04-08) Shen, Mark J.; Shinohara, Tetsuji; Park, Hyung-Wook; Frick, Kyle; Ice, Daniel S.; Choi, Eue-Keun; Han, Seongwook; Sharma, Rahul; Shen, Changyu; Fishbein, Michael C.; Chen, Lan S.; Lopshire, John C.; Zipes, Douglas P.; Lin, Shien-Fong; Chen, Peng-ShengIntroduction: Left sided low-level vagus nerve stimulation (LL-VNS) is used clinically for epilepsy and depression. We hypothesize that LL-VNS can suppress sympathetic outflow and reduce atrial tachyarrhythmias in ambulatory dogs. Methods: We implanted in 12 dogs a neurostimulator in left cervical vagus nerve and a radiotransmitter for continuous recording of left stellate ganglion nerve activities (SGNA), left thoracic vagal nerve activities (VNA) and electrocardiograms. The first 6 dogs (Group 1) underwent 1 week continuous LL-VNS. Another 6 dogs (Group 2) underwent intermittent rapid atrial pacing followed by active or sham LL-VNS on alternate weeks. Results: Integrated SGNA was significantly reduced during LL-VNS (7.8±0.9 mV-s vs. 9.4±0.9 mVs at baseline, P<0.05) in Group 1.The reduction was most apparent from 7 to 9 AM, (31% reduction, 10.8±2.5 mV-s versus 15.6±2.9 mV-s at baseline, P<0.01), along with a significantly reduced heart rate (P<0.05). SGNA-induced heart rate acceleration averaged 107.9±9.0 bpm during LL-VNS and 129.2±9.3 bpm at baseline (P<0.05). LL-VNS did not change VNA. The tyrosine hydroxylase-positive nerve structures in the left stellate ganglion were 99,684±22,257 µm2/mm2 in LL-VNS dogs and 186,561±11,383 µm2/mm2 (P<0.01) in normal control dogs. In Group 2, the frequencies of paroxysmal atrial fibrillation and atrial tachycardia during active LLVNS were 1.4±2.5/d and 8.0±5.8/d, respectively, significantly lower than during sham stimulation (9.2±6.2/d, P<0.01 and 22.0±4.4/d, P<0.001, respectively). Conclusion: LL-VNS suppresses SGNA and reduces the incidences of paroxysmal atrial tachyarrhythmias in ambulatory dogs. Significant neural remodeling of the left stellate ganglion is evident one week after cessation of chronic LL-VNS.Item Drug-induced atrial fibrillation(Springer Nature, 2012-08-20) Kaakeh, Yaman; Overholser, Brian R.; Lopshire, John C.; Tisdale, James E.; Medicine, School of MedicineAtrial fibrillation (AF) is a common cardiac arrhythmia that is associated with severe consequences, including symptoms, haemodynamic instability, increased cardiovascular mortality and stroke. While other arrhythmias such as torsades de pointes and sinus bradycardia are more typically thought of as drug induced, AF may also be precipitated by drug therapy, although ascribing causality to drug-associated AF is more difficult than with other drug-induced arrhythmias. Drug-induced AF is more likely to occur in patients with risk factors and co-morbidities that commonly co-exist with AF, such as advanced age, alcohol consumption, family history of AF, hypertension, thyroid dysfunction, sleep apnoea and heart disease. New-onset AF has been associated with cardiovascular drugs such as adenosine, dobutamine and milrinone. In addition, medications such as corticosteroids, ondansetron and antineoplastic agents such as paclitaxel, mitoxantrone and doxorubicin have been reported to induce AF. Whether bisphosphonate drugs are associated with new-onset AF remains controversial and requires further study. The potential contribution of specific drug therapy should be considered when patients present with new-onset AF.Item Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles(Ovid Technologies Wolters Kluwer - American Heart Association, 2015-06) Yu, Chih-Chieh; Corr, Christopher; Shen, Changyu; Shelton, Richard; Yadava, Mrinal; Rhea, Isaac; Straka, Susan; Fishbein, Michael C.; Chen, Zhenhui; Lin, Shien-Fong; Lopshire, John C.; Chen, Peng-Sheng; Department of Medicine, IU School of MedicineBACKGROUND: The transmural distribution of apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) current (IKAS) in failing human ventricles remains unclear. METHODS AND RESULTS: We optically mapped left ventricular wedge preparations from 12 failing native hearts and 2 rejected cardiac allografts explanted during transplant surgery. We determined transmural action potential duration (APD) before and after 100 nmol/L apamin administration in all wedges and after sequential administration of apamin, chromanol, and E4031 in 4 wedges. Apamin prolonged APD from 363 ms (95% confidence interval [CI], 341-385) to 409 (95% CI, 385-434; P<0.001) in all hearts, and reduced the transmural conduction velocity from 36 cm/s (95% CI, 30-42) to 32 cm/s (95% CI, 27-37; P=0.001) in 12 native failing hearts at 1000 ms pacing cycle length (PCL). The percent APD prolongation is negatively correlated with baseline APD and positively correlated with PCL. Only 1 wedge had M-cell islands. The percentages of APD prolongation in the last 4 hearts at 2000 ms PCL after apamin, chromanol, and E4031 were 9.1% (95% CI, 3.9-14.2), 17.3% (95% CI, 3.1-31.5), and 35.9% (95% CI, 15.7-56.1), respectively. Immunohistochemical staining of subtype 2 of SK protein showed increased expression in intercalated discs of myocytes. CONCLUSIONS: SK current is important in the transmural repolarization in failing human ventricles. The magnitude of IKAS is positively correlated with the PCL, but negatively correlated with APD when PCL is fixed. There is abundant subtype 2 of SK protein in the intercalated discs of myocytes.Item Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons(Society for Neuroscience, 1997-02-01) Nicol, Grant D.; Lopshire, John C.; Pafford, Carl M.; Pharmacology and Toxicology, School of MedicineThe capacity of the proinflammatory cytokines, tumor necrosis factor alpha (TNF alpha) and interleukin 1 beta (IL-1 beta), to modulate the sensitivity of isolated sensory neurons grown in culture to the excitatory chemical agent capsaicin was examined. Alterations in capsaicin sensitivity were assessed by quantifying the number of neurons labeled with cobalt after exposure to capsaicin and by recording the whole-cell response from a single neuron to the focal application of capsaicin. A 24 hr pretreatment of the neuronal cultures with TNF alpha (10 or 50 ng/ml), but not IL-1 beta (10 or 50 ng/ml), produced a concentration-dependent increase in the number of cobalt-labeled neurons after exposure to 100 nM capsaicin. The peak increase in the number of labeled neurons was attained after a 4 hr treatment with 10 ng/ml TNF alpha. Similarly, pretreatment with TNF alpha (10 ng/ml for 4, 12, and 24 hr) produced a greater than twofold increase in the average peak amplitude of the inward current evoked by 100 nM capsaicin. Both the TNF alpha-induced increase in labeling and current amplitude were blocked by treating the neuronal cultures with indomethacin before the addition of TNF alpha. Enhancement of the capsaicin-evoked current also was blocked by the specific cyclo-oxygenase-2 inhibitor SC-236. These results indicate that TNF alpha can enhance the sensitivity of sensory neurons to the excitation produced by capsaicin and that this enhancement likely is mediated by the neuronal production of prostaglandins. Isolated sensory neurons grown in culture may prove to be a useful model system in which to explore how prolonged exposure to mediators associated with chronic inflammation alter the regulatory pathways that modulate the excitability of the nervous system.