- Browse by Author
Browsing by Author "Long, Rachel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome(Elsevier, 2020-04-17) Thomas, Jared R.; LaCombe, Jonathan; Long, Rachel; Lana-Elola, Eva; Watson-Scales, Sheona; Wallace, Joseph M.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Roper, Randall J.; Biology, School of Sciencepresent with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits.Item Usage of and attitudes about green tea extract and Epigallocathechin-3-gallate (EGCG) as a therapy in individuals with Down syndrome(Elsevier, 2019-08) Long, Rachel; Drawbaugh, Montana L.; Davis, Charlene M.; Goodlett, Charles R.; Williams, Jane R.; Roper, Randall J.; Biology, School of ScienceObjective Usage of and views concerning alternative therapies in the DS community are not well documented. Some positive effects of green tea extracts (GTE) containing Epigallocathechin-3-gallate (EGCG) have been reported in individuals with DS and DS mouse models, but minimal improvements or detrimental effects of pure EGCG treatment have been reported in DS mouse models. Given the uncertainty about the effectiveness of these supplements, the goal of this study was to determine the relative prevalence of and attitudes about GTE/EGCG treatments among DS caregivers. Methods An anonymous survey about attitudes and usage of GTE/EGCG in individuals with DS was completed by caregivers of these individuals. Results GTE/EGCG treatment was provided by 18% of responding caregivers who were mostly younger, highly educated, and utilized scientific sources and other parents to influence their decision to use GTE/EGCG. Individuals with DS who received GTE/EGCG were characterized as less severely disabled. Most caregivers who did not give GTE/EGCG reported concerns about potential side effects and lack of effectiveness. Few caregivers consulted with medical providers about GTE/EGCG usage. Conclusions These results demonstrate a need for communication between caregivers, medical providers, and scientists about potential benefits and risks for adverse effects of GTE, EGCG, and other nutritional supplements in individuals with DS.