- Browse by Author
Browsing by Author "Long, Jeffrey D."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Analysis of longitudinal censored semicontinuous data with application to the study of executive dysfunction: the Towers Task(Sage, 2017) Lourens, Spencer; Zhang, Ying; Long, Jeffrey D.; Paulsen, Jane S.; Biostatistics and Health Data Science, School of MedicineExecutive dysfunction is a deficiency in skills of planning and problem solving that characterizes many neuropsychiatric disorders. The Towers Task is a commonly used measure of planning and problem solving for assessing executive function. Towers Task data are usually zero-inflated and right-censored, and ignoring these features can result in biased inference for the disease characterization of executive dysfunction. In this manuscript, a mixed-effects model for longitudinal censored semicontinuous data is developed for analyzing longitudinal Towers Task data from the PREDICT-HD study. The model is contrasted with current practice and implications for general use are discussed.Item Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1(Frontiers Media, 2022-01-20) van der Plas, Ellen; Long, Jeffrey D.; Koscik, Timothy R.; Magnotta, Vincent; Monckton, Darren G.; Cumming, Sarah A.; Gottschalk, Amy C.; Hefti, Marco; Gutmann, Laurie; Nopoulos, Peggy C.; Neurology, School of MedicineIntroduction: The present study had four aims. First, neuronal injury markers, including neurofilament light (NF-L), total tau, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), were compared between individuals with and without adult-onset myotonic dystrophy type 1 (DM1). Second, the impact of age and CTG repeat on brain injury markers was evaluated. Third, change in brain injury markers across the study period was quantified. Fourth, associations between brain injury markers and cerebral white matter (WM) fractional anisotropy (FA) were identified. Methods: Yearly assessments, encompassing blood draws and diffusion tensor imaging on a 3T scanner, were conducted on three occasions. Neuronal injury markers were quantified using single molecule array (Simoa). Results: The sample included 53 patients and 70 controls. NF-L was higher in DM1 patients than controls, with individuals in the premanifest phases of DM1 (PreDM1) exhibiting intermediate levels ( χ 2 ( 2 ) = 38.142, P < 0.001). Total tau was lower in DM1 patients than controls (Estimate = -0.62, 95% confidence interval [CI] -0.95: -0.28, P < 0.001), while GFAP was elevated in PreDM1 only (Estimate = 30.37, 95% CI 10.56:50.19, P = 0.003). Plasma concentrations of UCH-L1 did not differ between groups. The age by CTG interaction predicted NF-L: patients with higher estimated progenitor allelege length (ePAL) had higher NF-L at a younger age, relative to patients with lower CTG repeat; however, the latter exhibited faster age-related change (Estimate = -0.0021, 95% CI -0.0042: -0.0001, P = 0.045). None of the markers changed substantially over the study period. Finally, cerebral WM FA was significantly associated with NF-L (Estimate = -42.86, 95% CI -82.70: -3.02, P = 0.035). Interpretation: While NF-L appears sensitive to disease onset and severity, its utility as a marker of progression remains to be determined. The tau assay may have low sensitivity to tau pathology associated with DM1.Item Longitudinal Beta-Binomial Modeling using GEE for Over-Dispersed Binomial Data(Wiley, 2017-03) Wu, Hongqian; Zhang, Ying; Long, Jeffrey D.; Department of Biostatistics, School of Public HealthLongitudinal binomial data are frequently generated from multiple questionnaires and assessments in various scientific settings for which the binomial data are often overdispersed. The standard generalized linear mixed effects model may result in severe underestimation of standard errors of estimated regression parameters in such cases and hence potentially bias the statistical inference. In this paper, we propose a longitudinal beta-binomial model for overdispersed binomial data and estimate the regression parameters under a probit model using the generalized estimating equation method. A hybrid algorithm of the Fisher scoring and the method of moments is implemented for computing the method. Extensive simulation studies are conducted to justify the validity of the proposed method. Finally, the proposed method is applied to analyze functional impairment in subjects who are at risk of Huntington disease from a multisite observational study of prodromal Huntington disease.Item Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1(Elsevier, 2023) Koscik, Timothy R.; van der Plas, Ellen; Long, Jeffrey D.; Cross, Stephen; Gutmann, Laurie; Cumming, Sarah A.; Monckton, Darren G.; Shields, Richard K.; Magnotta, Vincent; Nopoulos, Peggy C.; Neurology, School of MedicineMyotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.Item Longitudinal diffusion changes in prodromal and early HD: Evidence of white-matter tract deterioration(Wiley, 2017-03) Shaffer, Joseph J.; Ghayoor, Ali; Long, Jeffrey D.; Kim, Regina Eun-Young; Lourens, Spencer; O’Donnell, Lauren J.; Westin, Carl-Fredrik; Rathi, Yogesh; Magnotta, Vincent; Paulsen, Jane S.; Johnson, Hans J.; Biostatistics, School of Public HealthINTRODUCTION: Huntington's disease (HD) is a genetic neurodegenerative disorder that primarily affects striatal neurons. Striatal volume loss is present years before clinical diagnosis; however, white matter degradation may also occur prior to diagnosis. Diffusion-weighted imaging (DWI) can measure microstructural changes associated with degeneration that precede macrostructural changes. DWI derived measures enhance understanding of degeneration in prodromal HD (pre-HD). METHODS: As part of the PREDICT-HD study, N = 191 pre-HD individuals and 70 healthy controls underwent two or more (baseline and 1-5 year follow-up) DWI, with n = 649 total sessions. Images were processed using cutting-edge DWI analysis methods for large multicenter studies. Diffusion tensor imaging (DTI) metrics were computed in selected tracts connecting the primary motor, primary somato-sensory, and premotor areas of the cortex with the subcortical caudate and putamen. Pre-HD participants were divided into three CAG-Age Product (CAP) score groups reflecting clinical diagnosis probability (low, medium, or high probabilities). Baseline and longitudinal group differences were examined using linear mixed models. RESULTS: Cross-sectional and longitudinal differences in DTI measures were present in all three CAP groups compared with controls. The high CAP group was most affected. CONCLUSIONS: This is the largest longitudinal DWI study of pre-HD to date. Findings showed DTI differences, consistent with white matter degeneration, were present up to a decade before predicted HD diagnosis. Our findings indicate a unique role for disrupted connectivity between the premotor area and the putamen, which may be closely tied to the onset of motor symptoms in HD. Hum Brain Mapp 38:1460-1477, 2017. © 2017 Wiley Periodicals, Inc.Item Mild Cognitive Impairment as an Early Landmark in Huntington's Disease(Frontiers Media, 2021-07-07) Zhang, Ying; Zhou, Junyi; Gehl, Carissa R.; Long, Jeffrey D.; Johnson, Hans; Magnotta, Vincent A.; Sewell, Daniel; Shannon, Kathleen; Paulsen, Jane S.; Biostatistics and Health Data Science, School of MedicineAs one of the clinical triad in Huntington's disease (HD), cognitive impairment has not been widely accepted as a disease stage indicator in HD literature. This work aims to study cognitive impairment thoroughly for prodromal HD individuals with the data from a 12-year observational study to determine whether Mild Cognitive Impairment (MCI) in HD gene-mutation carriers is a defensible indicator of early disease. Prodromal HD gene-mutation carriers evaluated annually at one of 32 worldwide sites from September 2002 to April 2014 were evaluated for MCI in six cognitive domains. Linear mixed-effects models were used to determine age-, education-, and retest-adjusted cut-off values in cognitive assessment for MCI, and then the concurrent and predictive validity of MCI was assessed. Accelerated failure time (AFT) models were used to determine the timing of MCI (single-, two-, and multiple-domain), and dementia, which was defined as MCI plus functional loss. Seven hundred and sixty-eight prodromal HD participants had completed all six cognitive tasks, had MRI, and underwent longitudinal assessments. Over half (i.e., 54%) of the participants had MCI at study entry, and half of these had single-domain MCI. Compared to participants with intact cognitive performances, prodromal HD with MCI had higher genetic burden, worsened motor impairment, greater brain atrophy, and a higher likelihood of estimated HD onset. Prospective longitudinal study of those without MCI at baseline showed that 48% had MCI in subsequent visits and data visualization suggested that single-domain MCI, two-domain MCI, and dementia represent appropriate cognitive impairment staging for HD gene-mutation carriers. Findings suggest that MCI represents an early landmark of HD and may be a sensitive enrichment variable or endpoint for prodromal clinical trials of disease modifying therapeutics.Item Motor onset and diagnosis in Huntington disease using the diagnostic confidence level(Springer, 2015-12) Liu, Dawei; Long, Jeffrey D.; Zhang, Ying; Raymond, Lynn A.; Marder, Karen; Rosser, Anne; McCusker, Elizabeth A.; Mills, James A.; Paulsen, Jane S.; Department of Biostatistics, Richard M. Fairbanks School of Public HealthHuntington disease (HD) is a neurodegenerative disorder characterized by motor dysfunction, cognitive deterioration, and psychiatric symptoms, with progressive motor impairments being a prominent feature. The primary objectives of this study are to delineate the disease course of motor function in HD, to provide estimates of the onset of motor impairments and motor diagnosis, and to examine the effects of genetic and demographic variables on the progression of motor impairments. Data from an international multisite, longitudinal observational study of 905 prodromal HD participants with cytosine-adenine-guanine (CAG) repeats of at least 36 and with at least two visits during the followup period from 2001 to 2012 was examined for changes in the diagnostic confidence level from the Unified Huntington's Disease Rating Scale. HD progression from unimpaired to impaired motor function, as well as the progression from motor impairment to diagnosis, was associated with the linear effect of age and CAG repeat length. Specifically, for every 1-year increase in age, the risk of transition in diagnostic confidence level increased by 11% (95% CI 7-15%) and for one repeat length increase in CAG, the risk of transition in diagnostic confidence level increased by 47% (95% CI 27-69%). Findings show that CAG repeat length and age increased the likelihood of the first onset of motor impairment as well as the age at diagnosis. Results suggest that more accurate estimates of HD onset age can be obtained by incorporating the current status of diagnostic confidence level into predictive models.Item Phenotype Characterization of HD Intermediate Alleles in PREDICT-HD(IOS Press, 2016-12-15) Downing, Nancy R.; Lourens, Spencer; De Soriano, Isabella; Long, Jeffrey D.; Paulsen, Jane S.; PREDICT-HD Investigators and Coordinators of the Huntington Study Group; Biostatistics, School of Public HealthBACKGROUND: Huntington disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion on chromosome 4. Pathology is associated with CAG repeat length. Prior studies examining people in the intermediate allele (IA) range found subtle differences in motor, cognitive, and behavioral domains compared to controls. OBJECTIVE: The purpose of this study was to examine baseline and longitudinal differences in motor, cognitive, behavioral, functional, and imaging outcomes between persons with CAG repeats in three ranges: normal (≤26), intermediate (27-35), and reduced penetrance (36-39). METHODS: We examined longitudinal data from 389 participants in three allele groups: 280 normal controls (NC), 21 intermediate allele [IA], and 88 reduced penetrance [RP]. We used linear mixed models to identify differences in baseline and longitudinal outcomes between groups. Three models were tested: 1) no baseline or longitudinal differences; 2) baseline differences but no longitudinal differences; and 3) baseline and longitudinal differences. RESULTS: Model 1 was the best fitting model for most outcome variables. Models 2 and 3 were best fitting for some of the variables. We found baseline and longitudinal trends of declining performance across increasing CAG repeat length groups, but no significant differences between the NC and IA groups. CONCLUSION: We did not find evidence to support differences in the IA group compared to the NC group. These findings are limited by a small IA sample size.