ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lombardo, Fernando C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum
    (Wiley, 2021-05) Lombardo, Fernando C.; Decca, Ricardo S.; Viotti, Ludmila; Villar, Paula I.; Physics, School of Science
    Spatially separated bodies in a relative motion through vacuum experience a tiny friction force known as quantum friction (QF). This force has so far eluded experimental detection due to its small magnitude and short range. Quantitative details revealing traces of the QF in the degradation of the quantum coherence of a particle are presented. Environmentally induced decoherence for a particle sliding over a dielectric sheet can be decomposed into contributions of different signatures: one solely induced by the electromagnetic vacuum in the presence of the dielectric and another induced by motion. As the geometric phase (GP) has been proved to be a fruitful venue of investigation to infer features of the quantum systems, herein it is proposed to use the accumulated GP acquired by a particle as a QF sensor. Furthermore, an innovative experiment designed to track traces of QF by measuring the velocity dependence of corrections to the GP and coherence is proposed. The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction, with the hope that this non-equilibrium phenomenon can be readily measured soon.
  • Loading...
    Thumbnail Image
    Item
    Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase
    (Nature, 2020) Farías, M. Belén; Lombardo, Fernando C.; Soba, Alejandro; Villar, Paula I.; Decca, Ricardo S.; Physics, School of Science
    The geometric phase can be used as a fruitful venue of investigation to infer features of the quantum systems. Its application can reach new theoretical frontiers and imply innovative and challenging experimental proposals. Herein, we take advantage of the geometric phase to sense the corrections induced while a neutral particle travels at constant velocity in front of an imperfect sheet in quantum vacuum. As it is already known, two bodies in relative motion at constant velocity experience a quantum contactless dissipative force, known as quantum friction. This force has eluded experimental detection so far due to its small magnitude and short range. However, we give details of an innovative experiment designed to track traces of the quantum friction by measuring the velocity dependence of corrections to the geometric phase. We notice that the environmentally induced corrections can be decomposed in different contributions: corrections induced by the presence of the dielectric sheet and the motion of the particle in quantum vacuum. As the geometric phase accumulates over time, its correction becomes relevant at a relative short timescale, while the system still preserves purity. The experimentally viable scheme presented would be the first one in tracking traces of quantum friction through the study of decoherence effects on a NV center in diamond.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University