ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Logrip, Marian L."

Now showing 1 - 10 of 14
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Altered excitatory transmission in striatal neurons after chronic ethanol consumption in selectively bred crossed high alcohol-preferring mice
    (Elsevier, 2021) Rangel-Barajas, Claudia; Boehm, Stephen L., II.; Logrip, Marian L.; Psychology, School of Science
    Genetic predisposition to heavy drinking is a risk factor for alcohol misuse. We used selectively bred crossed high alcohol-preferring (cHAP) mice to study sex differences in alcohol drinking and its effect on glutamatergic activity in dorsolateral (DLS) and dorsomedial (DMS) striatum. We performed whole-cell patch-clamp recording in neurons from male and female cHAP mice with 5-week alcohol drinking history and alcohol-naïve controls. In DMS, alcohol-naïve males' neurons displayed lower cell capacitance and higher membrane resistance than females' neurons, both effects reversed by drinking. Conversely, in DLS neurons, drinking history increased capacitance only in males and changed membrane resistance only in females. Altered biophysical membrane properties were accompanied by disrupted glutamatergic transmission. Drinking history increased spontaneous excitatory postsynaptic current (sEPSC) amplitude in DMS and frequency in DLS female neurons, compared to alcohol-naïve females, without effect in males. Acute ethanol differentially impacted DMS and DLS neurons by sex and drinking history. In DMS, acute alcohol significantly increased sEPSC frequency only in neurons from alcohol-naïve females, an effect that disappeared after drinking history. In DLS, acute alcohol had opposing effects in males and females based on drinking history. Estrous cycle also impacted DMS and DLS neurons differently: sEPSC amplitudes were higher in DMS cells from drinking history than alcohol-naïve females, whereas estrous cycle, not drinking history, modified DLS firing rate. Our data show sex differences in cHAP ethanol consumption and neurophysiology, suggesting differential dysregulation of glutamatergic drive onto DMS and DLS after chronic ethanol consumption.
  • Loading...
    Thumbnail Image
    Item
    Blockade of Striatal Dopamine D1 Receptors Reduces Quinine-Resistant Alcohol Intake
    (2019-05) Houck, Christa A.; Grahame, Nicholas J.; Boehm, Stephen L.; Logrip, Marian L.; Hopf, F. Woodward
    Drinking despite aversive consequences, or compulsive drinking, is a criterion of alcohol use disorder and can be modeled in rodents by adding bitter quinine into alcohol. Previous studies have shown the development of quinine-resistant ethanol (EtOH) drinking following a drinking history, but used animals that achieved relatively low blood alcohol levels. Selectively bred crossed High Alcohol Preferring (cHAP) mice average over 250 mg/dl during a two-bottle choice procedure. Compulsive drinking is hypothesized to be D1-receptor mediated via the dorsolateral striatum (DLS). We hypothesized that 2 weeks of free-choice EtOH would lead to quinine resistance and intra-DLS infusion of a D1-antagonist, SCH23390, would attenuate quinine-resistant alcohol drinking with no effect on non-conflicted EtOH drinking. Infusion of SCH23390 into the DMS would not affect quinine-resistant drinking. cHAP mice had guide cannulae placed in the DLS or DMS and had either two weeks (2W) of EtOH and water two-bottle choice or were EtOH naïve (0W). Mice were infused with either SCH23390 or saline immediately prior to one 10% EtOH and water test day and SCH23390 did not disturb alcohol drinking. The following day, we adulterated the EtOH with 0.32-g/L quinine (0.89 mM), and mice received the same microinjection. For animals cannulated in the DLS, 2W history group infused with saline drank more quinine-adulterated EtOH than the 0W saline mice. While SCH23390 infused 0W animals looked no different from saline treated mice, it attenuated quinine + EtOH intake in the 2W animals to the level of 0W animals. Interestingly, DMS-cannulated mice demonstrated similar behavior, with SCH23390 reducing EtOH + quinine consumption, while leaving EtOH consumption undisturbed. Quinine resistance following 2 weeks of free-choice EtOH consumption is attenuated by acute administration of a D1-antagonist in the DLS, suggesting that an alcohol history induces compulsivity and that dopamine contributes to this behavior. This is unique to compulsive drinking, as non-conflicted EtOH drinking was unaffected.
  • Loading...
    Thumbnail Image
    Item
    Cell-Specific Spinophilin Function Underlying Striatal Motor Adaptations Associated with Amphetamine-Induced Behavioral Sensitization
    (2022-07) Watkins, Darryl Shumon; Yamamoto, Bryan K.; Atwood, Brady K.; Baucum, Anthony J. II; Hudmon, Andy; Logrip, Marian L.
    Striatal-mediated pathological disease-states such as Obsessive-Compulsive Disorder (OCD), Parkinson’s Disease (PD), and psychostimulant drug addiction/abuse are coupled with distinct motor movement abnormalities. In addition, these disorders are associated with perturbed synaptic transmission. Proper synaptic transmission is critical for maintaining neuronal communication. Furthermore, in many striatal-dependent disease-states, the principle striatal neurons, medium spiny neurons (MSNs), exhibit differential perturbations in downstream signaling. Signal transduction pathways that are localized to the glutamatergic post-synaptic density (PSD) of GABAergic MSNs regulate protein phosphorylation in a tightly controlled manner. Alterations in the control of this phosphorylation in striatal MSNs are observed in myriad striatal pathological diseasestates and can give rise to perturbations in synaptic transmission. While serine/threonine kinases obtain substrate specificity, in part, by phosphorylating specific consensus sites, serine/threonine phosphatases such as protein phosphatase 1 (PP1) are much more promiscuous. To obtain substrate selectivity, PP1 associates with targeting proteins. The major targeting protein for PP1 in the PSD of striatal dendritic spines is spinophilin. Spinophilin not only binds PP1, but also concurrently interacts with myriad synaptic proteins. Interestingly, dopamine depletion, an animal model of PD, modulates spinophilin protein-protein interactions in the striatum. However, spinophilin function on basal striatal-mediated motor behaviors such as the rotarod or under hyperdopaminergic states such as those observed following psychostimulant-induced behavioral sensitization are less well characterized. To elucidate spinophilin function more specifically, we have generated multiple transgenic animals that allow for cell type-specific loss of spinophilin as well as cell-specific interrogation of spinophilin protein interactions. Here, I report the functional role of spinophilin in regulating striatal mediated motor behaviors and functional changes associated with amphetamine-induced locomotor sensitization. In addition, we define changes in spinophilin protein-protein interactions that may mediate these behavioral changes. Furthermore, global loss of spinophilin abrogates amphetamine-induced sensitization and plays a critical role in striatal motor learning and performance. The data suggest that the striatal spinophilin protein interactome is upregulated in MSNs following psychostimulant administration. In addition, loss of spinophilin changes protein expression in myriad psychostimulant-mediated striatal adaptations. Taken together the data suggests that spinophilin’s protein-protein interactions in the striatum are obligate for appropriate striatal mediated motor function.
  • Loading...
    Thumbnail Image
    Item
    Chronic Stress and Sex as Mediators of the Basolateral-Centromedial Amygdala Circuit and its Response to Acute Ethanol
    (2020-05) Gainey, Sean; Logrip, Marian L.; Lapish, Christopher C.; Baucum II, Anthony J.
    Anxiety disorders are the most common class of mental disorders in the United States, and they both promote and exacerbate disorders of substance abuse. Mounting evidence of sex differences in the relationship between anxiety disorders and alcoholism supports the potential existence of an anxiety-dependent vulnerability to alcohol abuse in women compared with men. One potential point of overlap in the physiological systems involved in anxiety response and reward processing is the amygdala. Here, a model of chronic stress in rodents was employed to probe changes in the electrophysiological and biochemical properties of the amygdala at a post-stress baseline and during a post-stress first exposure to alcohol. Electrophysiological data revealed that neurons in the centromedial amygdala were more responsive to stimulation in the basolateral amygdala in females compared with males, but a history of chronic stress altered the female response to match that of males with or without a history of chronic stress. Protein analysis of postsynaptic glutamatergic receptor expression and phosphorylation in the amygdala did not indicate any differences based on sex or exposure to stress or alcohol. These data demonstrate a sex difference in stress-induced alterations in amygdala circuitry and indicate a potential role for this circuitry in the comorbidity of anxiety disorders and alcoholism.
  • Loading...
    Thumbnail Image
    Item
    Exploring the Effects of a Corticotropin Releasing Factor (CRF) Receptor Antagonist on Habit Expression
    (2020-12) Haines, Kari; Czachowski, Cristine L.; Grahame, Nicholas J.; Logrip, Marian L.
    Some individuals with alcohol use disorder (AUD) continue to drink because they have developed a habit in which they are not considering the consequences of their actions. Habitual actions persist despite changes in reward and are often studied using devaluation procedures. Stress hormones, such as corticotropin releasing factor (CRF), have been linked to AUD when examining binge-like drinking and withdrawal in rodents. Stress has been examined in the switch from goal-directed to habitual behavior, and CRF has often mimicked the effects of stress exposure. This study looked at the possible direct effects of CRF on habit expression in rats using an operant paradigm. Finding possible novel mechanisms of habit could create an avenue for future novel treatment options. Female and male Long Evans rats were trained on a variable interval schedule using sucrose as a reward. Rats then underwent devaluation procedures including both sensory-specific satiety and conditioned taste aversion (CTA) to test for habitual behaviors. Prior to an extinction session post-CTA, animals were treated with either 20 mg/kg R121919, a CRF1 receptor antagonist, or vehicle. A second extinction session was conducted where animals received the alternative treatment. Lever presses were recorded as a measure of goal-directed or habitual behavior. Sensory-specific satiety devaluation tests revealed that animals were not sensitive to devaluation. This was further supported by both post-CTA extinction sessions. R121919 had no effect on lever pressing in either devalued or valued groups. Further research is needed to explore how a CRF receptor antagonist may affect habit formation or the transition from goal-directed to habit behaviors. Future studies should also examine any possible interaction effects CRF may have with alcohol or stress on habitual behaviors.
  • Loading...
    Thumbnail Image
    Item
    Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents
    (Society for Neuroscience, 2017-02-01) Harris, R. Adron; Bajo, Michal; Bell, Richard L.; Blednov, Yuri A.; Varodayan, Florence P.; Truitt, Jay M.; de Guglielmo, Giordano; Lasek, Amy W.; Logrip, Marian L.; Vendruscolo, Leandro F.; Roberts, Amanda J.; Roberts, Edward; George, Olivier; Mayfield, Jody; Billiar, Timothy R.; Hackam, David J.; Mayfield, R. Dayne; Koob, George F.; Roberto, Marisa; Homanics, Gregg E.; Psychiatry, School of Medicine
    Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target., SIGNIFICANCE STATEMENT Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.
  • Loading...
    Thumbnail Image
    Item
    Housing Condition Differentially Impacts Escalation of Alcohol Intake, Relapse-Like Drinking, Anxiety-Like Behavior, and Stress History Effects by Sex
    (Wiley, 2021) Moench, Kelly M.; Logrip, Marian L.; Psychology, School of Science
    Background: Stress triggers alcohol use and relapse to drinking, with different effects by sex. Women are more susceptible to stress-related alcohol misuse, and most stressors in rodents produce sexually divergent effects. Female rodents are particularly sensitive to the stress produced by solitary housing, yet the impact of housing conditions on the establishment, escalation, and post-abstinence potentiation of intermittent access alcohol drinking in male and female rats, and the interaction of these factors with stress history are not well described. Methods: Male (n = 62) and female (n = 64) Wistar rats were housed individually or in pairs separated by a perforated divider. Rats were exposed to light-cued footshock stress (stress history), or cues alone (control), once daily for 3 days, followed by 8 weeks' drinking under intermittent access to a 2-bottle choice (IA2BC), with 20% alcohol (v/v in water) available in addition to water for 24 hours on alternate days. After a 2-week forced abstinence, anxiety-like behavior was assessed via defensive withdrawal testing; then, IA2BC alcohol access was renewed for 2 weeks to model relapse-like behavior. Results: Pair-housed female rats did not increase their alcohol intake across the 8-week drinking period, unlike all other groups, and stress history did not significantly change alcohol consumption. After abstinence, anxiety-like behavior was greatest in pair-housed stress history males, whereas alcohol intake was significantly elevated only in female rats, particularly those in solitary housing. Conclusions: Together, these findings suggest that paired housing differentially contributes to behavior in male and female rats, blunting alcohol intake in females, and unmasking stress history effects on anxiety-like behavior in males.
  • Loading...
    Thumbnail Image
    Item
    Male and female impairments in odor span are observed in a rat model of PTSD
    (Cold Spring Harbor Laboratory, 2022-12-21) McGonigle, Colleen E.; Lapish, Christopher C.; Logrip, Marian L.; Psychology, School of Science
    Posttraumatic stress disorder (PTSD) is associated with neural and behavioral alterations in response to trauma exposure, including working memory impairments. Rodent models of PTSD have not fully investigated chronic or reactive working memory deficits, despite clinical relevance. The present study uses footshock to induce a posttraumatic stress state in male and female rats and evaluates the effect of footshock and trauma-paired odor cues on working memory performance in the odor span task. Results demonstrate the emergence of chronic deficits in working memory among animals exposed to footshock by 3 wk after traumatic stress. The presentation of a trauma-paired odor cue was associated with further decrement in working memory performance for male animals. Furthermore, anxiety-like behaviors associated with the PTSD-like phenotype could predict the degree of working memory impairment in response to the trauma-paired odor cue. This study enhances validation of an existing rodent model of PTSD through replication of the clinical observations of working memory deficits associated with PTSD and provides novel insight into effects in female rodents. This will facilitate work to probe underlying mechanistic dysregulation of working memory following footshock trauma exposure and future development of novel treatment strategies.
  • Loading...
    Thumbnail Image
    Item
    Molecular tools to elucidate factors regulating alcohol use
    (Elsevier, 2018) Logrip, Marian L.; Psychology, School of Science
    Alcohol use disorders (AUD) are pervasive societal problems, marked by high levels of alcohol intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD display a range of disordered drinking and alcohol-related behaviors. The diversity in disease presentation, as well as the established polygenic nature of the disorder and complex neurocircuitry, speak to the variety in neurochemical changes resulting from alcohol intake that may differentially regulate alcohol-related behaviors. Investigations into the molecular adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior through neurochemical changes. This review highlights recent advances in molecular methodology, addressing how incorporation of these cutting-edge techniques not only may enhance current knowledge of the molecular bases of AUD, but also may facilitate identification of improved treatment targets that may be therapeutic in specific subpopulations of AUD individuals.
  • Loading...
    Thumbnail Image
    Item
    Sex differences in responses of the basolateral-central amygdala circuit to alcohol, corticosterone and their interaction
    (Elsevier, 2017-03-01) Logrip, Marian L.; Oleata, Christopher; Roberto, Marisa; Psychology, School of Science
    Alcohol use disorders are chronically relapsing conditions that pose significant health challenges for our society. Stress is a prevalent trigger of relapse, particularly for women, yet the mechanisms by which alcohol and stress interact, and how this differs between males and females, remain poorly understood. The glutamatergic circuit connecting the basolateral (BLA) and central (CeA) nuclei of the amygdala is a likely locus for such adaptations, yet the impact of alcohol, corticosterone and their interaction on this circuit has been understudied. In particular, no studies have addressed sex differences in these effects or potential differential responses between the lateral and medial subdivisions of the central nucleus. Thus, we assessed the effects of alcohol and corticosterone treatments on BLA-evoked compound glutamatergic responses in medial and lateral CeA neurons from male and female rats. We observed minimal differences between medial and lateral CeA responses to alcohol and corticosterone in male rats, which were primarily sensitive to alcohol-induced inhibition of glutamatergic postsynaptic potentials. Unlike male neurons, cells from female rats displayed reduced sensitivity to alcohol’s inhibitory effects. In addition, female neurons diverged in their sensitivity to corticosterone, with lateral CeA neuronal responses significantly blunted following corticosterone treatment and medial CeA neurons largely unchanged by corticosterone or subsequent co-application of alchol. Together these data highlight striking differences in how male and female amygdala respond to alcohol and the stress hormone corticosterone, factors which may impact differential susceptibility of the sexes to alcohol- and stress-related disorders.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University