ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Liu, Zhipeng"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping
    (Elsevier, 2020-08) Liu, Zhipeng; Zhang, Yang; Graham, Sarah; Wang, Xiaokun; Cai, Defeng; Huang, Menghao; Pique-Regi, Roger; Dong, Xiaocheng Charlie; Chen, Y. Eugene; Willer, Cristen; Liu, Wanqing; Biochemistry and Molecular Biology, School of Medicine
    Background & aims: Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and obesity are epidemiologically correlated with each other but the causal inter-relationships between them remain incompletely understood. We aimed to explore the causal relationships between the 3 diseases. Methods: Using both UK Biobank and publicly available genome-wide association study data, we performed a 2-sample bidirectional Mendelian randomization analysis to test the causal inter-relationships between NAFLD, T2D, and obesity. Transgenic mice expressing the human PNPLA3-I148M isoforms (TghPNPLA3-I148M) were used as an example to validate causal effects and explore underlying mechanisms. Results: Genetically driven NAFLD significantly increased the risk of T2D and central obesity but not insulin resistance or generalized obesity, while genetically driven T2D, body mass index and WHRadjBMI causally increased NAFLD risk. The animal study focusing on PNPLA3 corroborated these causal effects: compared to the TghPNPLA3-I148I controls, the TghPNPLA3-I148M mice developed glucose intolerance and increased visceral fat, but maintained normal insulin sensitivity, reduced body weight, and decreased circulating total cholesterol. Mechanistically, the TghPNPLA3-I148M mice demonstrated decreased pancreatic insulin but increased glucagon secretion, which was associated with increased pancreatic inflammation. In addition, transcription of hepatic cholesterol biosynthesis pathway genes was significantly suppressed, while transcription of thermogenic pathway genes was activated in subcutaneous and brown adipose tissues but not in visceral fat in TghPNPLA3-I148M mice. Conclusions: Our study suggests that lifelong, genetically driven NAFLD causally promotes T2D with a late-onset type 1-like diabetic subphenotype and central obesity; while genetically driven T2D, obesity, and central obesity all causally increase the risk of NAFLD. This causal relationship revealed new insights into how nature and nurture drive these diseases, providing novel hypotheses for disease subphenotyping. Lay summary: Non-alcoholic fatty liver disease, type 2 diabetes and obesity are epidemiologically correlated with each other, but their causal relationships were incompletely understood. Herein, we identified causal relationships between these conditions, which suggest that each of these closely related diseases should be further stratified into subtypes. This is important for accurate diagnosis, prevention and treatment of these diseases.
  • Loading...
    Thumbnail Image
    Item
    In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children
    (Springer Nature, 2018-11) Nobili, Valerio; Alisi, Anna; Liu, Zhipeng; Liang, Tiebing; Crudele, Annalisa; Raponi, Massimiliano; Lin, Jingmei; Chalasani, Naga P.; Liu, Wanqing; Pathology and Laboratory Medicine, School of Medicine
    BACKGROUND: FADS1 gene encodes delta 5 desaturase, a rate-limiting enzyme in the metabolism of n-3 and n-6 polyunsaturated fatty acids (PUFAs). Minor alleles of FADS1 locus polymorphisms are associated with reduced FADS1 expression and intra-hepatic fat accumulation. However, the relationship between FADS1 expression and pediatric nonalcoholic fatty liver disease (NAFLD) risk remains to be explored. METHODS: We analyzed FADS1 transcription levels and their association with intra-hepatic fat and histology in children, and we performed pathway enrichment analysis on transcriptomic profiles associated with FADS1 polymorphisms. We also evaluated the weight of FADS1 alleles on the response to combined docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE) treatment. RESULTS: FADS1 mRNA level was significantly and inversely associated with intra-hepatic fat (p = 0.004), degree of steatosis (p = 0.03), fibrosis (p = 0.05), and NASH (p = 0.008) among pediatric livers. Transcriptomics demonstrated a significant enrichment of a number of pathways strongly related to NAFLD (e.g., liver damage, fibrosis, and hepatic stellate cell activation). Compared to children who are common allele homozygotes, children with FADS1 minor alleles had a greater reduction in steatosis, fibrosis, and NAFLD activity score after DHA-CHO-VE. CONCLUSION: This study suggests that decreased FADS1 expression may be associated with NAFLD in children but an increased response to DHA-CHO-VE.
  • Loading...
    Thumbnail Image
    Item
    Integrative omics analysis identifies macrophage migration inhibitory factor signaling pathways underlying human hepatic fibrogenesis and fibrosis
    (Wolters Kluwer, 2019-03-01) Liu, Zhipeng; Chalasani, Naga; Lin, Jingmei; Gawrieh, Samer; He, Yuan; Tseng, Yan J.; Liu, Wanqing; Medicine, School of Medicine
    The genetic basis underlying liver fibrosis remains largely unknown. We conducted a study to identify genetic alleles and underlying pathways associated with hepatic fibrogenesis and fibrosis at the genome-wide level in 121 human livers. By accepting a liberal significance level of P<1e-4, we identified 73 and 71 candidate loci respectively affecting the variability in alpha-smooth muscle actin (α-SMA) levels (fibrogenesis) and total collagen content (fibrosis). The top genetic loci associated with the two markers were BAZA1 and NOL10 for α-SMA expression and FAM46A for total collagen content (P<1e-6). We further investigated the relationship between the candidate loci and the nearby gene transcription levels (cis-expression quantitative trait loci) in the same liver samples. We found that 44 candidate loci for α-SMA expression and 44 for total collagen content were also associated with the transcription of the nearby genes (P<0.05). Pathway analyses of these genes indicated that macrophage migration inhibitory factor (MIF) related pathway is significantly associated with fibrogenesis and fibrosis, though different genes were enriched for each marker. The association between the single nucleotide polymorphisms, MIF and α-SMA showed that decreased MIF expression is correlated with increased α-SMA expression, suggesting that variations in MIF locus might affect the susceptibility of fibrogenesis through controlling MIF gene expression. In summary, our study identified candidate alleles and pathways underlying both fibrogenesis and fibrosis in human livers. Our bioinformatics analyses suggested MIF pathway as a strong candidate involved in liver fibrosis, thus further investigation for the role of the MIF pathway in liver fibrosis is warranted. The study was reviewed and approved by the Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on May 17, 2018.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University