- Browse by Author
Browsing by Author "Liu, Xingcai"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Intensified Structural Overshoot Aggravates Drought Impacts on Dryland Ecosystems(AGU, 2024-01) Zhang, Yixuan; Liu, Liu; Cheng, Yongming; Kang, Shaozhong; Li, Hao; Wang, Lixin; Shi, Yu; Liu, Xingcai; Cheng, Lei; Earth and Environmental Sciences, School of ScienceA favorable environment can induce vegetation overgrowth to exceed the ecosystem carrying capacity, exacerbating water resource depletion and increasing the risk of lagged effects on vegetation degradation. This phenomenon is defined as structural overshoot, which can lead to large-scale forest mortality and grassland deterioration. However, the current understanding of structural overshoot remains incomplete due to the complex time-varying interactions between vegetation and climate. Here, we used a dynamic learning algorithm to decompose the contributions of vegetation and climate to drought occurrence, trace the connection between antecedent and concurrent vegetation dynamics, thus effectively capturing structural overshoot. This study focused on the climate-sensitive hotspot in Northwest China drylands, where significant vegetation greening induced by a warming and wetting climate was detected during 1982–2015, leading to soil moisture deficit and aggravating vegetation degradation risks during droughts. We found that during this period, structural overshoot induced approximately 34.6% of the drought events, and lagged effects accounted for 16.7% of the vegetation degradation for these overshoot drought events. The occurrence of overshoot droughts exhibited an increasing trend over time, which was primarily driven by vegetation overgrowth followed by precipitation variation. Although the severity of overshoot and non-overshoot droughts were generally comparable in spatial distribution, the impact of overshoot droughts is still becoming increasingly obvious. Our results indicate that the expected intensified overshoot droughts cannot be ignored and emphasize the necessity of sustainable agroecosystem management strategies.Item Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.(NPG, 2016) Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai; Department of Earth Science, School of ScienceIdentifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.