- Browse by Author
Browsing by Author "Liu, Sean S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Histomorphometric and Biomechanical Analyses of Osseointegration of Four Different Orthodontic Mini Implant Surfaces(2011) Yadav, Sumit; Roberts, W. Eugene, Jr.; Chen, Jie; Katona, Thomas R.; Liu, Sean S.; Huja, Sarandeep S. (Sarandeep Singh), 1965-Objective: To evaluate the osseointegration potential of four different surfaces of mini-implants .We hypothesized that mini-implants surface roughness alters the intrinsic biomechanical properties of the bone integrated to titanium. Materials and Methods: Mini implants and circular discs were made from alloy Ti6Al4V grade 5. On the basis of surface treatment study was divided into 4 groups: Group 1: Machined: no surface treatment, Group 2: Acid etched: with hydrochloric acid, Group 3: Grit Blasted with alumina and Group 4: Grit blasted +Acid etched. Surface roughness parameters (mean surface roughness: Ra and Quadratic Average roughness: Rq) of the four discs from each group were measured by the optical profilometer. Contact angle measurement of 3 discs from each group was done with a Goniometer. Contact angle of liquids with different hydrophobicity and hydrophilicity were measured. 128 mini implants, differing in surface treatment, were placed into the tibias and femurs of 8 adult male New Zealand white rabbits. Biomechanical properties (Removal torque and hardness) measurements and histomorphometric observations were measured. Results: Ra and Rq of groups were: Machined (1.17±0.11, 2.59±0.09) Acid etched (1.82±0.04, 3.17±0.13), Grit blasted (4.83±0.23, 7.04±0.08), Grit blasted + Acid etched (3.64±0.03, 4.95±0.04) respectively. Group 4 had significantly (p=0.000) lower Ra and Rq than Group 3. The interaction between the groups and liquid was significant. Group 4 had significantly lower contact angle measurements (40.4°, 26.9°), both for blood and NaCl when compared to other three groups (p≤0.01). Group 4 had significantly higher torque than Group 3 (Tibia: 13.67>9.07N-cm; Femur: 18.21>14.12N-cm), Group 4 (Tibia: 13.67>9.78N-cm; Femur: 18.21>12.87N-cm), and machined (Tibia: 13.67>4.08N-cm; Femur: 18.21>6.49N-cm). SEM analysis reveals significantly more bone implant gap in machined implant surfaces than treated implant surfaces. Bone to implant contact had significantly higher values for treated mini implant surface than machined surface. Hardness of the bone near the implant bone interface is 20 to 25% less hard than bone 1mm away from it in both Femur and Tibia. Conclusion: Surface roughness and wettability of mini implants influences their biological response. Grit blasted and acid etched mini implants had lowest contact angle for different liquids tested and highest removal torques.Item Microdamage generation by tapered and cylindrical mini-screw implants after pilot drilling(2014-09) Taing-Watson, Emily; Katona, Thomas R.; Stewart, Kelton T.; Ghoneima, Ahmed; Chu, Gabriel T. M.; Kyung, Hee-Moon; Liu, Sean S.; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryObjective: To investigate the relationship between mini-screw implant (MSI) diameter (1.6 vs 2.0 mm) and shape (tapered vs cylindrical) and the amount of microdamage generated during insertion. Materials and Methods: Thirty-six cylindrical and 36 tapered MSIs, 6 mm long, were used in this study. Half of each shape was 1.6 mm in diameter, while the other half was 2.0 mm. After pilot drilling, four and five MSIs were inserted, respectively, into fresh cadaveric maxillae and mandibles of dogs. Bone blocks containing the MSIs were sectioned and ground parallel to the MSI axis. Epifluorescent microscopy was used to measure overall cortical thickness, crack length, and crack number adjacent to the MSI. Crack density and total microdamage burden per surface length were calculated. Three-way analysis of variance (ANOVA) was used to test the effects of jaw, and MSI shape and diameter. Pairwise comparisons were made to control the overall significance level at 5%. Results: The larger (2.0 vs 1.6 mm) cylindrical MSIs increased the numbers, lengths, and densities of microcracks, and the total microdamage burden. The same diameter cylindrical and tapered MSIs generated a similar number of cracks and crack lengths. More total microdamage burden was created by the 2.0-mm cylindrical than the 2.0-mm tapered MSIs. Although higher crack densities were produced by the insertion of 1.6-mm tapered MSIs, there was no difference in total microdamage burden induced by 1.6-mm tapered and 1.6-mm cylindrical MSIs. Conclusions: Pilot drilling is effective in reducing microdamage during insertion of tapered MSIs. To prevent excessive microdamage, large diameter and cylindrical MSIs should be avoided.Item Pyk2: Potential Regulator of Post Menopausal Bone Loss(2013) Largura, Heather; Liu, Sean S.; Stewart, Kelton T.; Baldwin, James Joseph, 1925-; Allen, Matthew R.; Bruzzaniti, AngelaOsteoporosis is a pathologic condition of bone, commonly found in post-menopausal women, which occurs from an imbalance between bone formation and resorption. Following menopause, the bone resorbing activity of osteoclasts exceeds bone formation by osteoblasts, resulting in decreased trabecular and cortical bone and a subsequent decrease in bone mass. Reduced bone mass increases the risk of pathologic fracture of bones. Due to adverse effects associated with current treatment protocols for bone loss, alternative treatment modalities with reduced adverse effects are needed. Estrogen plays a role in maintaining balance in the bone remodeling cycle by controlling remodeling activation, osteoblast and osteoclast numbers, and their respective effectiveness in formation and resorption. With declining estrogen levels, this elegantly balanced interaction is altered and bone resorption exceeds bone formation, resulting in bone loss and increased bone fragility. Pyk2 is a protein tyrosine kinase that plays an important role in regulating bone resorption by osteoclasts, as well as osteoblast proliferation and differentiation. Deletion of the Pyk2 gene in mice leads to an increase in bone mass, in part due to dysfunctional osteoclast and osteoblast activity. In this study, we examined the role of Pyk2 in the effects of estrogen on bone mass. We used wild type (WT) and Pyk2 knock-out (KO) mice that had been ovariectomized (OVX) and treated with or without estrogen (E2)-releasing pellets. Control mice included sham OVX surgery receiving placebo pellet. We found that deletion of Pyk2 conferred increased bone mass in sham, OVX and OVX+E2 mice. In addition, Pyk2 KO mice supplemented with 17estradiol exhibited a marked increase in bone volume/trabecular volume, trabecular number, and trabecular thickness, but not cortical bone parameters compared to WT mice. Results of this study provide evidence for the role of Pyk2 in the effects of estrogen on bone mass. Understanding the role of Pyk2 in bone could lead to the development of new pharmaceutical targets for the treatment of bone loss associated with osteoporosis.