- Browse by Author
Browsing by Author "Liu, Qi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A clinical nomogram for predicting tumor regression grade in esophageal squamous-cell carcinoma treated with immune neoadjuvant immunotherapy(AME Publishing Company, 2022) Yu, Yongkui; Wang, Wei; Qin, Zimin; Li, Haomiao; Liu, Qi; Ma, Haibo; Sun, Haibo; Bauer, Thomas L.; Pimiento, Jose M.; Gabriel, Emmanuel; Birdas, Thomas; Li, Yin; Xing, Wenqun; Surgery, School of MedicineBackground: There are various treatment options for esophageal squamous cell cancer. including surgery, peri-operative chemotherapy, and radiation. More recently, neoadjuvant immunotherapy has also been shown improve outcomes. In this study, we addressed the question, "Can we predict which patients with esophageal squamous cell cancer will benefit from neoadjuvant immunotherapy?". Methods: All patients with thoracic esophageal squamous-cell carcinoma (T2N+M0-T3-4N0/+M0) (according to the eighth edition of the National Comprehensive Cancer Network guidelines) who underwent immune neoadjuvant immunochemotherapy with programmed cell death protein 1 (PD-1) combined with paclitaxel plus cisplatin or nedaplatin in the Affiliated Cancer Hospital of Zhengzhou University, China, between November 2019 and August 2021 were included in this study. All patients underwent surgical resection. We developed a response [tumor regression grade (TRG)] prediction model using the least absolute shrinkage and selection operator (LASSO) regression incorporating factors associated with response. The accuracy of the prediction model was then validated. Results: We included 79 patients who underwent neoadjuvant immunotherapy combined with chemotherapy, aged 48-78 years (62.05±6.67), including 21 males and 58 females. There were five cases of immune-related pneumonia, of which three cases were diagnosed as immune-related pneumonia during the perioperative period, and one case of immune-related thyroid dysfunction changes. After LASSO regression, the factors that were independently associated with TRG were clinical T stage before neoadjuvant therapy, clinical N stage before neoadjuvant therapy, albumin level difference from before to after neoadjuvant therapy, white blood cell (WBC) count before neoadjuvant therapy, and T stage before surgery. We constructed a prediction model, plotted the nomogram, and verified its accuracy. Its Brier score was 0.13, its calibration slope was 0.98, and its C-index was 0.90 (95% CI: 0.82-0.97). Conclusions: Our prediction model can predict the likelihood of TRG in patients with esophageal squamous cell cancer after immunotherapy combined with neoadjuvant chemotherapy. Using this prediction model, we plan to conduct a subsequent neoadjuvant radiotherapy in patients with of TRG 2-3 patients with neoadjuvant radiotherapy.Item Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity(Elsevier, 2019-03-12) Aho, Erin R.; Wang, Jing; Gogliotti, Rocco D.; Howard, Gregory C.; Phan, Jason; Acharya, Pankaj; Macdonald, Jonathan D.; Cheng, Ken; Lorey, Shelly L.; Lu, Bin; Wenzel, Sabine; Foshage, Audra M.; Alvarado, Joseph; Wang, Feng; Shaw, J. Grace; Zhao, Bin; Weissmiller, April M.; Thomas, Lance R.; Vakoc, Christopher R.; Hall, Matthew D.; Hiebert, Scott W.; Liu, Qi; Stauffer, Shaun R.; Fesik, Stephen W.; Tansey, William P.; Biochemistry and Molecular Biology, School of MedicineThe chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.Item In Situ and Operando Investigation of the Dynamic Morphological and Phase Changes of Selenium-doped Germanium Electrode during (De)Lithiation Processes(RSC, 2020-01) Li, Tianyi; Lim, Cheolwoong; Cui, Yi; Zhou, Xinwei; Kang, Huixiao; Yan, Bo; Meyerson, Melissa L.; Weeks, Jason A.; Liu, Qi; Guo, Fangmin; Kou, Ronghui; Liu, Yuzi; De Andrade, Vincent; De Carlo, Francesco; Ren, Yang; Sun, Cheng-Jun; Mullins, C. Buddie; Chen, Lei; Fu, Yongzhu; Zhu, Likun; Mechanical and Energy Engineering, School of Engineering and TechnologyTo understand the effect of selenium doping on the good cycling performance and rate capability of a Ge0.9Se0.1 electrode, the dynamic morphological and phase changes of the Ge0.9Se0.1 electrode were investigated by synchrotron-based operando transmission X-ray microscopy (TXM) imaging, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The TXM results show that the Ge0.9Se0.1 particle retains its original shape after a large volume change induced by (de)lithiation and undergoes a more sudden morphological and optical density change than pure Ge. The difference between Ge0.9Se0.1 and Ge is attributed to a super-ionically conductive Li–Se–Ge network formed inside Ge0.9Se0.1 particles, which contributes to fast Li-ion pathways into the particle and nano-structuring of Ge as well as buffering the volume change of Ge. The XRD and XAS results confirm the formation of a Li–Se–Ge network and reveal that the Li–Se–Ge phase forms during the early stages of lithiation and is an inactive phase. The Li–Se–Ge network also can suppress the formation of the crystalline Li15Ge4 phase. These in situ and operando results reveal the effect of the in situ formed, super-ionically conductive, and inactive network on the cycling performance of Li-ion batteries and shed light on the design of high capacity electrode materials.Item Sythesis of mesoporous phosphates via solid state reaction at low temperature(2010-08-25T16:20:56Z) Liu, Qi; Xie, Jian; Cheng, Ruihua; Zhu, LikunThree parts consist of my thesis work centered on the synthesis of inorganic phosphates and then metal organic frame work (MOF). The first part is the synthesis of mesoporous chromium phosphates using the room temperature solid state reaction (SSR)approach. One of the major aims of this work is to fill the gap of lacking a low cost, low or zero pollution, easy method to synthesize phosphates. The room temperature solid state reaction has been demonstrated in this work is such a method. Mesoporous chromium phosphates were prepared using the solid state reaction at low temperature using CrCl3.6H2O, and NaH2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized chromium phosphates were characterized by XRD, EDS, HR-TEM, N2-physisorption, TG-DSC and UV-Vis spectroscopies. The results indicate that chromium phosphate mesophases were formed only at atomic ratios of P/Cr ≥ 1.8. The mesophase for P/Cr = 2.0 phosphate possessed the highest ordering of pore array, with a specific surface area as high as 250.78 m2/g and an average pore size of 3.48nm. The catalytic performance of the chromium phosphates was examined by employing a model reaction, namely the dehydration of isopropanol to propene. The results indicated that all synthesized chromium phosphates exhibited significantly higher isopropanol conversions and propene yields than that synthesized via the conventional precipitation route. The highest propene selectivity (96.43%) at the highest isopropanol conversion (93.10%) has been obtained over the mesoporous chromium phosphate catalyst synthesized with a P/Cr atomic ratio of 2.0. The formation mechanism of the mesoporous chromium phosphate was investigated by FTIR technique.The results show that CTAB template plays a key role in the formation of mesoporous chromium phosphates. Mesoporous lithium manganese phosphates were also successfully synthesized using the same approach of solid state reaction (SSR) at low temperature by using LiC2O3.6H2O, MnCl2.6H2O and NH4H2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized lithium manganese phosphates were characterized by XRD, EDS, SEM, HR-TEM, N2-physisorption. The results show that the synthesized meoporous lithium manganese phosphates exhibited a high specific surface area (256.63 m2/g) and a narrow pore size distribution. The electrochemical tests of Li-ion batteries were performed and the results show that the charge voltage could increase to be 3.60 V while the first time discharge capacity could be as high as 100 mAh/g. The Nitro-Cu-MOF complexes, a new class of metal organic frameworks, have been successfully synthesized using a conventional thermal reaction. The obtained Nitro-Cu-MOFs have a specific surface area of 576.27 m2/g and a pore volume of 0.32 m3/g.The gas uptake of the obtained Nitro-Cu-MOFs at 60 psi is 68 mg/g (sorbate/sorbent) at 298 K for carbon dioxide, which is much higher than that of the Cu-MOFs, 31 mg/g at 298 K for carbon dioxide.