- Browse by Author
Browsing by Author "Liu, Peiqing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item AMDE-1 is a dual function chemical for autophagy activation and inhibition(PLoS, 2015-04-20) Li, Min; Yang, Zuolong; Vollmer, Laura L.; Gao, Ying; Fu, Yuanyuan; Lui, Cui; Chen, Xiaoyun; Liu, Peiqing; Vogt, Andreas; Yin, Xiao-Ming; Department of Pathology and Laboratory Medicine, IU School of MedicineAutophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.Item Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo(Taylor & Francis, 2019-02) Fu, Yuanyuan; Hong, Liang; Xu, Jiecheng; Zhong, Guoping; Gu, Qiong; Gu, Qianqian; Guan, Yanping; Zheng, Xueping; Dai, Qi; Luo, Xia; Liu, Cui; Huang, Zhiying; Yin, Xiao-Ming; Liu, Peiqing; Li, Min; Pathology and Laboratory Medicine, School of MedicineHuman Atg4 homologs are cysteine proteases, which play key roles in the macroautophagy/autophagy process by cleaving Atg8 homologs for conjugation to lipid membranes and for deconjugation of Atg8 homologs from membranes. Expression of ATG4B is significantly increased in colorectal cancer cells compared to normal cells, suggesting that ATG4B may be important for cancer biology. Inhibition of ATG4B may reduce the autophagy activity, thereby sensitizing cancer cells to therapeutic agents. Thus, developing specific and potent ATG4B inhibitors for research as well as for potential therapeutic uses is highly needed. In this study, we integrated in silico screening and in vitro assays to discover a potent ATG4B inhibitor, named S130, from a noncommercial library. This chemical binds to ATG4B with strong affinity and specifically suppresses the activity of ATG4B but not other proteases. S130 did not cause the impairment of autophagosome fusion, nor did it result in the dysfunction of lysosomes. Instead, S130 might attenuate the delipidation of LC3-II on the autolysosomes to suppress the recycling of LC3-I, which normally occurs after LC3-II cleavage by ATG4B. Intriguingly, S130 induced cell death, which was accompanied with autophagy stress and could be further exacerbated by nutrient deprivation. Such cytotoxicity could be partially reversed by enhancing ATG4B activity. Finally, we found that S130 was distributed in tumor tissues in vivo and was also effective in arresting the growth of colorectal cancer cells. Thus, this study indicates that ATG4B is a potential anticancer target and S130 might be a novel small-molecule candidate for future cancer therapy.Item Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy(Nature Publishing Group, 2016-08-11) Gao, Ying; Liu, Yajun; Hong, Liang; Yang, Zuolong; Cai, Xinran; Chen, Xiaoyun; Fu, Yuanyuan; Lin, Yujie; Wen, Weijie; Li, Sitong; Liu, Xingguo; Huang, Heqing; Vogt, Andreas; Liu, Peiqing; Yin, Xiao-Ming; Li, Min; Department of Pathology and Laboratory Medicine, School of MedicineAutophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy.Item Loss‐of‐Function Genetic Screening Identifies Aldolase A as an Essential Driver for Liver Cancer Cell Growth Under Hypoxia(Wolters Kluwer, 2021-09) Niu, Yi; Lin, Ziyou; Wan, Arabella; Sun, Lei; Yan, Shijia; Liang, Heng; Zhan, Siyue; Chen, Dongshi; Bu, Xianzhang; Liu, Peiqing; Chen, Ceshi; He, Weiling; Lu, Xiongbin; Wan, Guohui; Medical and Molecular Genetics, School of MedicineBackground and aims: Hypoxia is a common feature of the tumor microenvironment (TME), which promotes tumor progression, metastasis, and therapeutic drug resistance through a myriad of cell activities in tumor and stroma cells. While targeting hypoxic TME is emerging as a promising strategy for treating solid tumors, preclinical development of this approach is lacking in the study of HCC. Approach and results: From a genome-wide CRISPR/CRISPR-associated 9 gene knockout screening, we identified aldolase A (ALDOA), a key enzyme in glycolysis and gluconeogenesis, as an essential driver for HCC cell growth under hypoxia. Knockdown of ALDOA in HCC cells leads to lactate depletion and consequently inhibits tumor growth. Supplementation with lactate partly rescues the inhibitory effects mediated by ALDOA knockdown. Upon hypoxia, ALDOA is induced by hypoxia-inducible factor-1α and fat mass and obesity-associated protein-mediated N6 -methyladenosine modification through transcriptional and posttranscriptional regulation, respectively. Analysis of The Cancer Genome Atlas shows that elevated levels of ALDOA are significantly correlated with poor prognosis of patients with HCC. In a screen of Food and Drug Administration-approved drugs based on structured hierarchical virtual platforms, we identified the sulfamonomethoxine derivative compound 5 (cpd-5) as a potential inhibitor to target ALDOA, evidenced by the antitumor activity of cpd-5 in preclinical patient-derived xenograft models of HCC. Conclusions: Our work identifies ALDOA as an essential driver for HCC cell growth under hypoxia, and we demonstrate that inhibition of ALDOA in the hypoxic TME is a promising therapeutic strategy for treating HCC.Item Niclosamide Triggers Non-Canonical LC3 Lipidation(MDPI, 2019-03-15) Liu, Yajun; Luo, Xia; Shan, Hao; Fu, Yuanyuan; Gu, Qianqian; Zheng, Xueping; Dai, Qi; Xia, Fan; Zheng, Zhihua; Liu, Peiqing; Yin, Xiao-Ming; Hong, Liang; Li, Min; Pathology and Laboratory Medicine, School of MedicineAutophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases.Item The protease activity of human ATG4B is regulated by reversible oxidative modification(Taylor & Francis, 2020-10) Zheng, Xueping; Yang, Zuolong; Gu, Qianqian; Xia, Fan; Fu, Yuanyuan; Liu, Peiqing; Yin, Xiao-Ming; Li, Min; Pathology and Laboratory Medicine, School of MedicineMacroautophagy/autophagy plays a pivotal role in cytoplasmic material recycling and metabolic turnover, in which ATG4B functions as a "scissor" for processing pro-LC3 and lipidated LC3 to drive the autophagy progress. Mounting evidence has demonstrated the tight connection between ROS and autophagy during various pathological situations. Coincidentally, several studies have shown that ATG4B is potentially regulated by redox modification, but the underlying molecular mechanism and its relationship with autophagy is ambiguous. In this study, we verified that ATG4B activity was definitely regulated in a reversible redox manner. We also determined that Cys292 and Cys361 are essential sites of ATG4B to form reversible intramolecular disulfide bonds that respond to oxidative stress. Interestingly, we unraveled a new phenomenon that ATG4B concurrently formed disulfide-linked oligomers at Cys292 and Cys361, and that both sites underwent redox modifications thereby modulating ATG4B activity. Finally, increased autophagic flux and decreased oxidation sensitivity were observed in Cys292 and Cys361 double site-mutated cells under normal growth conditions. In conclusion, our research reveals a novel molecular mechanism that oxidative modification at Cys292 and Cys361 sites regulates ATG4B function, which modulates autophagy.