- Browse by Author
Browsing by Author "Liu, Nannan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Approaching single temporal mode operation in twin beams generated by pulse pumped high gain spontaneous four wave mixing(OSA, 2016-01) Liu, Nannan; Liu, Yuhong; Guo, Xueshi; Yang, Lei; Li, Xiaoying; Ou, Z. Y.; Department of Physics, School of ScienceBy investigating the intensity correlation function, we study the spectral/temporal mode properties of twin beams generated by the pulse-pumped high gain spontaneous four wave mixing (SFWM) in optical fiber from both the theoretical and experimental aspects. The results show that the temporal property depends not only on the phase matching condition and the filters applied in the signal and idler fields, but also on the gain of SFWM. When the gain of SFWM is low, the spectral/temporal mode properties of the twin beams are determined by the phase matching condition and optical filtering and are usually of multi-mode nature, which leads to a value larger than 1 but distinctly smaller than 2 for the normalized intensity correlation function of individual signal/idler beam. However, when the gain of SFWM is very high, we demonstrate the normalized intensity correlation function of individual signal/idler beam approaches to 2, which is a signature of single temporal mode. This is so even if the frequencies of signal and idler fields are highly correlated so that the twin beams have multiple modes in low gain regime. We find that the reason for this behavior is the dominance of the fundamental mode over other higher order modes at high gain. Our investigation is useful for constructing high quality multi-mode squeezed and entangled states by using pulse-pumped spontaneous parametric down-conversion and SFWM.Item Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation(The Optical Society, 2015) Guo, Xueshi; Liu, Nannan; Li, Xiaoying; Ou, Z. Y.; Department of Physics, School of ScienceMode matching plays an important role in measuring the continuous variable entanglement. For the signal and idler twin beams generated by a pulse pumped fiber optical parametric amplifier (FOPA), the spatial mode matching is automatically achieved in single mode fiber, but the temporal mode property is complicated because it is highly sensitive to the dispersion and the gain of the FOPA. We study the temporal mode structure and derive the input-output relation for each temporal mode of signal and idler beams after decomposing the joint spectral function of twin beams with the singular-value decomposition method. We analyze the measurement of the quadrature-amplitude entanglement, and find mode matching between the multi-mode twin beams and the local oscillators of homodyne detection systems is crucial to achieve a high degree of entanglement. The results show that the noise contributed by the temporal modes nonorthogonal to local oscillator may be much larger than the vacuum noise, so the mode mis-match can not be accounted for by merely introducing an effective loss. Our study will be useful for developing a source of high quality continuous variable entanglement by using the FOPA.Item Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs(Nature, 2016) Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z. Y.; Department of Physics, School of ScienceOne of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.Item Three-way noiseless signal splitting in a parametric amplifier with quantum correlation(APS, 2016-06) Liu, Nannan; Li, Jiamin; Li, Xiaoying; Ou, Z. Y.; Department of Physics, School of ScienceWe demonstrate that a phase-insensitive parametric amplifier, when coupled to a quantum correlated source, can be used as a quantum information tap for noiseless three-way signal splitting. We find that the output signals are amplified noiselessly in two of the three output ports, while the other can more or less keep its original input size without adding noise. This scheme can be cascaded and scaled up for efficient information distribution in an optical network. Furthermore, we find that this scheme satisfies the criteria for a nonideal quantum nondemolition (QND) measurement and thus can serve as a QND measurement device. With two readouts correlated to the input, we find this scheme also satisfies the criterion for a sequential QND measurement.