- Browse by Author
Browsing by Author "Liu, Mintao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Tangent functional connectomes uncover more unique phenotypic traits(Elsevier, 2023-08-12) Abbas, Kausar; Liu, Mintao; Wang, Michael; Duong-Tran, Duy; Tipnis, Uttara; Amico, Enrico; Kaplan, Alan D.; Dzemidzic, Mario; Kareken, David; Ances, Beau M.; Harezlak, Jaroslaw; Goñi, Joaquín; Neurology, School of MedicineFunctional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint. We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference matrix, main-diagonal regularization, and distance metric. Our results showed that identification rates are systematically higher when using tangent-FCs across the “fingerprint gradient” (here including test-retest, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally (0.01) regularizing FCs while performing tangent space projection using Riemann reference matrix and using correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a second dataset (resting-state).Item Tangent space functional reconfigurations in individuals at risk for alcohol use disorder(ArXiv, 2024-05-24) Moghaddam, Mahdi; Dzemidzic, Mario; Guerrero, Daniel; Liu, Mintao; Alessi, Jonathan; Plawecki, Martin H.; Harezlak, Jaroslaw; Kareken, David; Goñi, Joaquín; Neurology, School of MedicineHuman brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning in/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression model results showed that engaging and disengaging functional reconfiguration were driven by different AUD risk factors. Functional reconfiguration when engaging in the SST was negatively associated with recent drinking. When disengaging from the SST, however, functional reconfiguration was negatively associated with FHA. In both models, several other factors contributed to the explanation of functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.