- Browse by Author
Browsing by Author "Liu, Mingyue"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation(MDPI, 2023-01-13) Yang, Yang; Liu, Mingyue; Yang, Zhen; Lin, Wei-Shao; Chen, Li; Tan, Jianguo; Prosthodontics, School of DentistryPeri-implant lesions, such as peri-implant mucositis and peri-implantitis, are bacterial-derived diseases that happen around dental implants, compromising the long-term stability and esthetics of implant restoration. Here, we report a surface-modification method on zirconia implant abutment using silver linear-beam ion implantation to reduce the bacterial growth around the implant site, thereby decreasing the prevalence of peri-implant lesions. The surface characteristics of zirconia after ion implantation was evaluated using energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and a contact-angle device. The antibacterial properties of implanted zirconia were evaluated using Streptococcus mutans and Porphyromonas gingivalis. The biocompatibility of the material surface was evaluated using human gingival fibroblasts. Our study shows that the zirconia surface was successfully modified with silver nanoparticles by using the ion-implantation method. The surface modification remained stable, and the silver-ion elution was below 1 ppm after one-month of storage. The modified surface can effectively eliminate bacterial growth, while the normal gingiva’s cell growth is not interfered with. The results of the study demonstrate that a silver-ion-implanted zirconia surface possesses good antibacterial properties and good biocompatibility. The surface modification using silver-ion implantation is a promising method for future usage.Item Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China(MDPI, 2017-06) Liu, Mingyue; Li, Huiying; Li, Lin; Man, Weidong; Jia, Mingming; Wang, Zongming; Lu, Chunyan; Earth Science, School of ScienceSpartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. View Full-TextItem Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images(MDPI, 2018-12) Liu, Mingyue; Mao, Dehua; Wang, Zongming; Li, Lin; Man, Weidong; Jia, Mingming; Ren, Chunying; Zhang, Yuanzhi; Earth Sciences, School of SciencePlant invasion imposes significant threats to biodiversity and ecosystem function. Thus, monitoring the spatial pattern of invasive plants is vital for effective ecosystem management. Spartina alterniflora (S. alterniflora) has been one of the most prevalent invasive plants along the China coast, and its spread has had severe ecological consequences. Here, we provide new observation from Landsat operational land imager (OLI) images. Specifically, 43 Landsat-8 OLI images from 2014 to 2016, a combination of object-based image analysis (OBIA) and support vector machine (SVM) methods, and field surveys covering the whole coast were used to construct an up-to-date dataset for 2015 and investigate the spatial variability of S. alterniflora in the coastal zone of mainland China. The classification results achieved good estimation, with a kappa coefficient of 0.86 and 96% overall accuracy. Our results revealed that there was approximately 545.80 km2 of S. alterniflora distributed in the coastal zone of mainland China in 2015, from Hebei to Guangxi provinces. Nearly 92% of the total area of S. alterniflora was distributed within four provinces: Jiangsu, Shanghai, Zhejiang, and Fujian. Seven national nature reserves invaded by S. alterniflora encompassed approximately one-third (174.35 km2) of the total area of S. alterniflora over mainland China. The Yancheng National Nature Reserve exhibited the largest area of S. alterniflora (115.62 km2) among the reserves. Given the rapid and extensive expansion of S. alterniflora in the 40 years since its introduction and its various ecological effects, geospatially varied responding decisions are needed to promote sustainable coastal ecosystems.Item Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention(MDPI, 2019-05-19) Mao, Dehua; Liu, Mingyue; Wang, Zongming; Li, Lin; Man, Weidong; Jia, Mingming; Zhang, Yuanzhi; Earth Sciences, School of ScienceGiven the extensive spread and ecological consequences of exotic Spartina alterniflora (S. alterniflora) over the coast of mainland China, monitoring its spatiotemporal invasion patterns is important for the sake of coastal ecosystem management and ecological security. In this study, Landsat series images from 1990 to 2015 were used to establish multi-temporal datasets for documenting the temporal dynamics of S. alterniflora invasion. Our observations revealed that S. alterniflora had a continuous expansion with the area increasing by 50,204 ha during the considered 25 years. The largest expansion was identified in Jiangsu Province during the period of 1990-2000, and in Zhejiang Province during the periods 2000-2010 and 2010-2015. Three noticeable hotspots for S. alterniflora invasion were Yancheng of Jiangsu, Chongming of Shanghai, and Ningbo of Zhejiang, and each had a net area increase larger than 5000 ha. Moreover, an obvious shrinkage of S. alterniflora was identified in three coastal cities including the city of Cangzhou of Hebei, Dongguan, and Jiangmen of Guangdong. S. alterniflora invaded mostly into mudflats (>93%) and shrank primarily due to aquaculture (55.5%). This study sheds light on the historical spatial patterns in S. alterniflora distribution and thus is helpful for understanding its invasion mechanism and invasive species management.Item Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China(MDPI, 2019-01) Tian, Yanlin; Wang, Zongming; Mao, Dehua; Li, Lin; Liu, Mingyue; Jia, Mingming; Man, Weidong; Lu, Chunyan; Earth Sciences, School of ScienceBeing one of the most important habitats for waterbirds, China’s West Songnen Plain has experienced substantial damage to its ecosystem, especially the loss and degradation of wetlands and grasslands due to anthropogenic disturbances and climate change. These occurrences have led to an obvious decrease in waterbird species and overall population size. Periodic and timely monitoring of changes in habitat suitability and understanding the potential driving factors for waterbirds are essential for maintaining regional ecological security. In this study, land cover changes from 2000 to 2015 in this eco-sensitive plain were examined using Landsat images and an object-based classification method. Four groups of environmental factors, including human disturbance, water situation, food availability, and shelter safety, characterized by remote sensing data were selected to develop a habitat suitability index (HSI) for assessing habitat suitability for waterbirds. HSI was further classified into four grades (optimum, good, general, and poor), and their spatiotemporal patterns were documented from 2000 to 2015. Our results revealed that cropland expansion and wetland shrinkage were the dominant land cover changes. Waterbird habitat areas in the optimum grade experienced a sharp decline by 7195 km2. The habitat area in good suitability experienced reduction at a change rate of −8.64%, from 38,672 km2 to 35,331 km2. In addition, waterbird habitats in the general and poor grades increased overall by 10.31%. More specifically, the total habitat areas with optimum suitable grade, in five national nature reserves over the study region, decreased by 12.21%, while habitat areas with poor suitable grade increased by 3.89%. Changes in habitat suitability could be largely attributed to the increase in human disturbance, including agricultural cultivation from wetlands and grasslands and the expansion of built-up lands. Our findings indicate that additional attention should be directed towards reducing human impact on habitat suitability for sustainable ecosystems.Item Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China(MDPI, 2017-04) Man, Weidong; Yu, Hao; Li, Lin; Liu, Mingyue; Mao, Dehua; Ren, Chunying; Wang, Zongming; Jia, Mingming; Miao, Zhenghong; Lu, Chunyan; Li, Huiying; Earth Sciences, School of ScienceSoil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 103 Tg = 1015 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year−1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year−1.