- Browse by Author
Browsing by Author "Liu, Hongliang"
Now showing 1 - 10 of 20
Results Per Page
Sort Options
Item Association of genetic variants of TMEM135 and PEX5 in the peroxisome pathway with cutaneous melanoma-specific survival(AME Publishing, 2021-03) Wang, Haijiao; Liu, Hongliang; Dai, Wei; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Yue, Ying; Nan, Hongmei; Wei, Qingyi; Epidemiology, School of Public HealthBackground: Peroxisomes are ubiquitous and dynamic organelles that are involved in the metabolism of reactive oxygen species (ROS) and lipids. However, whether genetic variants in the peroxisome pathway genes are associated with survival in patients with melanoma has not been established. Therefore, our aim was to identify additional genetic variants in the peroxisome pathway that may provide new prognostic biomarkers for cutaneous melanoma (CM). Methods: We assessed the associations between 8,397 common single-nucleotide polymorphisms (SNPs) in 88 peroxisome pathway genes and CM disease-specific survival (CMSS) in a two-stage analysis. For the discovery, we extracted the data from a published genome-wide association study from The University of Texas MD Anderson Cancer Center (MDACC). We then replicated the results in another dataset from the Nurse Health Study (NHS)/Health Professionals Follow-up Study (HPFS). Results: Overall, 95 (11.1%) patients in the MDACC dataset and 48 (11.7%) patients in the NHS/HPFS dataset died of CM. We found 27 significant SNPs in the peroxisome pathway genes to be associated with CMSS in both datasets after multiple comparison correction using the Bayesian false-discovery probability method. In stepwise Cox proportional hazards regression analysis, with adjustment for other covariates and previously published SNPs in the MDACC dataset, we identified 2 independent SNPs (TMEM135 rs567403 C>G and PEX5 rs7969508 A>G) that predicted CMSS (P=0.003 and 0.031, respectively, in an additive genetic model). The expression quantitative trait loci analysis further revealed that the TMEM135 rs567403 GG and PEX5 rs7969508 GG genotypes were associated with increased and decreased levels of mRNA expression of their genes, respectively. Conclusions: Once our findings are replicated by other investigators, these genetic variants may serve as novel biomarkers for the prediction of survival in patients with CM.Item Genetic variants in ELOVL2 and HSD17B12 predict melanoma‐specific survival(Wiley, 2019) Dai, Wei; Liu, Hongliang; Xu, Xinyuan; Jie, Ge; Luo, Sheng; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Li, Chunying; Wei, Qingyi; Epidemiology, School of Public HealthFatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single‐nucleotide polymorphisms (SNPs) in 149 genes of the fatty‐acid synthesis pathway with cutaneous melanoma disease‐specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome‐wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses’ Health and Health Professionals Follow‐up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51–0.84 and p = 8.34 × 10−4) and 2.29 (1.55–3.39 and p = 3.61 × 10−5), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies.Item Genetic variants in glutamine metabolic pathway genes predict cutaneous melanoma‐specific survival(Wiley, 2019-11) Chen, Ka; Liu, Hongliang; Liu, Zhensheng; Bloomer, Wendy; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Wei, Qingyi; Epidemiology, School of Public HealthGlutamine dependence is a unique metabolic defect seen in cutaneous melanoma (CM), directly influencing the treatment and prognosis. Here, we investigated the associations between 6025 common single‐nucleotide polymorphisms (SNPs) in 77 glutamine metabolic pathway genes with CM‐specific survival (CMSS) using genotyping datasets from two published genome‐wide association studies (GWASs). In the single‐locus analysis, 76 SNPs were found to be significantly associated with CMSS (P < .050, false‐positive report probability < 0.2 and Bayesian false discovery probability < 0.8) in the discovery dataset, of which seven SNPs were replicated in the validation dataset and three SNPs (HAL rs17676826T > C, LGSN rs12663017T > A, and NOXRED1 rs8012548A > G) independently predicted CMSS, with an effect‐allele attributed adjusted hazards ratio of 1.52 (95% confidence interval = 1.19‐1.93) and P < .001, 0.68 (0.54‐0.87) and P = .002 and 0.62 (0.46‐0.83) and P = .002, respectively. The model including the number of unfavorable genotypes (NUGs) of these three SNPs and covariates improved the five‐year CMSS prediction (P = .012) than the one with other covariates only. Further expression quantitative trait loci (eQTL) analysis found that the LGSN rs12663017 A allele was significantly associated with increased messenger RNA (mRNA) expression levels (P = 8.89 × 10 −11) in lymphoblastoid cell lines of the 1000 Genomes Project database. In the analysis of the genotype tissue expression (GTEx) project datasets, HAL rs17676826 C and NOXRED1 rs8012548 G alleles were significantly associated with their mRNA expression levels in sun‐exposed skin of the lower leg (P = 6.62 × 10−6 and 1.37 × 10−7, respectively) and in sun‐not‐exposed suprapubic skin (P < .001 and 1.43 × 10−8, respectively). Taken together, these genetic variants of glutamine‐metabolic pathway genes may be promising predictors of survival in patients with CM.Item Genetic variants in PDSS1 and SLC16A6 of the ketone body metabolic pathway predict cutaneous melanoma-specific survival(Wiley, 2020-03-31) Dai, Wei; Liu, Hongliang; Chen, Ka; Xu, Xinyuan; Qian, Danwen; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Li, Chunying; Wei, Qingyi; Epidemiology, School of Public HealthA few single-nucleotide polymorphisms (SNPs) have been identified to be associated with cutaneous melanoma (CM) survival though genome-wide association studies, but stringent multiple testing corrections required for the hypothesis-free testing may have masked some true associations. Using a hypothesis-driven analysis approach, we sought to evaluate associations between SNPs in ketone body metabolic pathway genes and CM survival. We comprehensively assessed associations between 4,196 (538 genotyped and 3,658 imputed) common SNPs in ketone body metabolic pathway genes and CM survival, using a dataset of 858 patients of a case-control study from The University of Texas M.D. Anderson Cancer Center as the discovery set and another dataset of 409 patients from the Nurses’ Health Study and the Health Professionals Follow-up Study as the replication set. There were 95/858 (11.1%) and 48/409 (11.5%) patients who died of CM, respectively. We identified two independent SNPs (i.e., PDSS1 rs12254548 G>C and SLC16A6 rs71387392 G>A) that were associated with CM survival, with allelic hazards ratios of 0.58 (95% confidence interval [CI]=0.44-0.76, P=9.00×10−5) and 1.98 (95% CI=1.34-2.94, P=6.30×10−4), respectively. Additionally, associations between genotypes of the SNPs and mRNA expression levels of their corresponding genes support the biologic plausibility of a role for these two variants in CM tumor progression and survival. Once validated by larger studies, PDSS1 rs12254548 and SLC16A6 rs71387392 may be biomarker for CM survival.Item Genetic variants in the calcium signaling pathway genes are associated with cutaneous melanoma-specific survival(Oxford, 2019) Wang, Xiaomeng; Liu, Hongliang; Xu, Yinghui; Xie, Jichun; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Song, Yanqiu; Wei, Qingyi; Epidemiology, School of Public HealthRemodeling or deregulation of the calcium signaling pathway is a relevant hallmark of cancer including cutaneous melanoma (CM). In this study, using data from a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center, we assessed the role of 41,377 common single-nucleotide polymorphisms (SNPs) of 167 calcium signaling pathway genes in CM survival. We used another GWAS from Harvard University as the validation dataset. In the single-locus analysis, 1830 SNPs were found to be significantly associated with CM-specific survival (CMSS; P ≤ 0.050 and false-positive report probability ≤ 0.2), of which 9 SNPs were validated in the Harvard study (P ≤ 0.050). Among these, three independent SNPs (i.e. PDE1A rs6750552 T>C, ITPR1 rs6785564 A>G and RYR3 rs2596191 C>A) had a predictive role in CMSS, with a meta-analysis-derived hazards ratio of 1.52 (95% confidence interval = 1.19–1.94, P = 7.21 × 10−4), 0.49 (0.33–0.73, 3.94 × 10−4) and 0.67 (0.53–0.86, 0.0017), respectively. Patients with an increasing number of protective genotypes had remarkably improved CMSS. Additional expression quantitative trait loci analysis showed that these genotypes were also significantly associated with mRNA expression levels of the genes. Taken together, these results may help us to identify prospective biomarkers in the calcium signaling pathway for CM prognosis.Item Genetic variants in the genes encoding rho GTPases and related regulators predict cutaneous melanoma-specific survival(Wiley, 2017-08-15) Liu, Shun; Wang, Yanru; Xue, William; Liu, Hongliang; Xu, Yinghui; Shi, Qiong; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Hyslop, Terry; Li, Yi; Han, Jiali; Wei, Qingyi; Epidemiology, School of Public HealthRho GTPases control cell division, motility, adhesion, vesicular trafficking and phagocytosis, which may affect progression and/or prognosis of cancers. Here, we investigated associations between genetic variants of Rho GTPases-related genes and cutaneous melanoma-specific survival (CMSS) by re-analyzing a published melanoma genome-wide association study (GWAS) and validating the results in another melanoma GWAS. In the single-locus analysis of 36,018 SNPs in 129 Rho-related genes, 427 SNPs were significantly associated with CMSS (p < 0.050 and false-positive report probability <0.2) in the discovery dataset, and five SNPs were replicated in the validation dataset. Among these, four SNPs (i.e., RHOU rs10916352 G > C, ARHGAP22 rs3851552 T > C, ARHGAP44 rs72635537 C > T and ARHGEF10 rs7826362 A > T) were independently predictive of CMSS (a meta-analysis derived p = 9.04 × 10-4 , 9.58 × 10-4 , 1.21 × 10-4 and 8.47 × 10-4 , respectively). Additionally, patients with an increasing number of unfavorable genotypes (NUGs) of these loci had markedly reduced CMSS in both discovery dataset and validation dataset (ptrend =1.47 × 10-7 and 3.12 × 10-5 ). The model including the NUGs and clinical variables demonstrated a significant improvement in predicting the five-year CMSS. Moreover, rs10916352C and rs3851552C alleles were significantly associated with an increased mRNA expression levels of RHOU (p = 1.8 × 10-6 ) and ARHGAP22 (p = 5.0 × 10-6 ), respectively. These results may provide promising prognostic biomarkers for CM personalized management and treatment.Item Genetic variants in the integrin signaling pathway genes predict cutaneous melanoma survival(Wiley, 2017-03-15) Li, Hongyu; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Xu, Yinghui; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Han, Jiali; Wei, Qingyi; Epidemiology, School of Public HealthTo identify genetic variants involved in prognosis of cutaneous melanoma (CM), we investigated associations of single nucleotide polymorphisms (SNPs) of genes in the integrin signaling pathway with CM survival by re-analyzing a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center (MDACC), and then validated significant SNPs in another GWAS from Harvard University. In the MDACC study, 1,148 SNPs were significantly associated with CM-specific survival (CMSS) (P ≤ 0.050 and false-positive report probability ≤ 0.20), and nine SNPs were validated in the Harvard study (P ≤ 0.050). Among these, three independent SNPs (i.e., DOCK1 rs11018104 T>A, rs35748949 C>T and PAK2 rs1718404 C>T) showed a predictive role in CMSS, with an effect-allele attributed adjusted hazards ratio [adjHR of 1.50 (95% confidence interval (CI) = 1.18-1.90, P = 7.46E-04), 1.53 (1.18-1.97, 1.18E-03) and 0.58 (0.45-0.76, 5.60E-05), respectively]. Haplotype analysis revealed that a haplotype carrying two risk alleles A-T in DOCK1 was associated with the poorest survival in both MDACC (adjHR=1.73, 95% CI = 1.19-2.50, P = 0.004) and Harvard (adjHR = 1.95, 95% CI=1.14-3.33, P = 0.010) studies. In addition, patients with an increasing number of unfavorable genotypes (NUGs) for these three SNPs had a poorer survival. Incorporating NUGs with clinical variables showed a significantly improved ability to classify CMSS (AUC increased from 86.8% to 88.6%, P = 0.031). Genetic variants in the integrin signaling pathway may independently or jointly modulate the survival of CM patients. Further large, prospective studies are needed to validate these findings.Item Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival(Wiley, 2017) Xu, Yinghui; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Hyslop, Terry; Li, Xin; Han, Jiali; Wei, Qingyi; Department of Epidemiology, School of Public HealthMetzincins are key molecules in the degradation of the extracellular matrix and play an important role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS using the dataset from the genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC) which included 858 non-Hispanic white patients with CM, and then validated using the dataset from the Harvard GWAS study which had 409 non-Hispanic white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32-2.29, 9.68E-05), 1.46 (1.15-1.85, 0.002), 1.68 (1.31-2.14, 3.32E-05) and 0.67 (0.51-0.87, 0.003), respectively, in the meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (Ptrend < 0.001). An improvement was observed in the prediction model (area under the curve [AUC] = 81.4% vs. 78.6%), when these risk genotypes were added to the model containing non-genotyping variables. Our findings suggest that these genetic variants may be promising prognostic biomarkers for CMSS.Item Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival(Wiley, 2016-12-15) Zhang, Weikang; Liu, Hongliang; Yin, Jieyun; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Han, Jiali; Wei, Qingyi; Department of Epidemiology, Richard M. Fairbanks School of Public HealthThe Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control and thus may be involved in cancer development. In this study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-piRNA pathway genes in melanoma disease-specific survival. A published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses' Health Study and Health Professionals Follow-up Study. After multiple testing correction, we found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3' UTR microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence interval (CI) = 1.21-2.27, p =1.50 × 10-3 ] and validation dataset (HR = 1.55, 95% CI = 1.03-2.34, p = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI, 1.26-2.08, p =1.55 × 10-4 ). Using RNA-seq data from the 1000 Genomes Project, we found that DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. Additional large, prospective studies are needed to validate these findings.Item Genetic variants in the vitamin D pathway genes VDBP and RXRA modulate cutaneous melanoma disease-specific survival(Wiley, 2016-03) Yin, Jieyun; Liu, Hongliang; Yi, Xiaohua; Wu, Wenting; Amos, Christopher I.; Feng, Shenying; Lee, Jeffrey E.; Han, Jiali; Wei, Qingyi; Department of Epidemiology, Richard M. Fairbanks School of Public HealthSingle nucleotide polymorphisms (SNPs) in the vitamin D pathway genes have been implicated in cutaneous melanoma (CM) risk, but their role in CM disease-specific survival (DSS) remains obscure. We comprehensively analyzed the prognostic roles of 2669 common SNPs in the vitamin D pathway genes using data from a published genome-wide association study (GWAS) at The University of Texas M.D. Anderson Cancer Center (MDACC) and then validated the SNPs of interest in another GWAS from the Nurses' Health Study and Health Professionals Follow-up Study. Among the 2669 SNPs, 203 were significantly associated with DSS in MDACC dataset (P < 0.05 and false-positive report probability < 0.2), of which 18 were the tag SNPs. In the replication, two of these 18 SNPs showed nominal significance: the VDBP rs12512631 T > C was associated with a better DSS [combined hazards ratio (HR) = 0.66]; and the same for RXRA rs7850212 C > A (combined HR = 0.38), which were further confirmed by the Fine and Gray competing-risks regression model. Further bioinformatics analyses indicated that these loci may modulate corresponding gene methylation status.