- Browse by Author
Browsing by Author "Liu, Hongfu"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Knowledge Reused Outlier Detection(IEEE, 2019-03) Yu, Weiren; Ding, Zhengming; Hu, Chunming; Liu, Hongfu; Computer and Information Science, School of ScienceTremendous efforts have been invested in the unsupervised outlier detection research, which is conducted on unlabeled data set with abnormality assumptions. With abundant related labeled data available as auxiliary information, we consider transferring the knowledge from the labeled source data to facilitate the unsupervised outlier detection on target data set. To fully make use of the source knowledge, the source data and target data are put together for joint clustering and outlier detection using the source data cluster structure as a constraint. To achieve this, the categorical utility function is employed to regularize the partitions of target data to be consistent with source data labels. With an augmented matrix, the problem is completely solved by a K-means - a based method with the rigid mathematical formulation and theoretical convergence guarantee. We have used four real-world data sets and eight outlier detection methods of different kinds for extensive experiments and comparison. The results demonstrate the effectiveness and significant improvements of the proposed methods in terms of outlier detection and cluster validity metrics. Moreover, the parameter analysis is provided as a practical guide, and noisy source label analysis proves that the proposed method can handle real applications where source labels can be noisy.Item Marginalized Latent Semantic Encoder for Zero-Shot Learning(IEEE, 2019-06) Ding, Zhengming; Liu, Hongfu; Computer Information and Graphics Technology, School of Engineering and TechnologyZero-shot learning has been well explored to precisely identify new unobserved classes through a visual-semantic function obtained from the existing objects. However, there exist two challenging obstacles: one is that the human-annotated semantics are insufficient to fully describe the visual samples; the other is the domain shift across existing and new classes. In this paper, we attempt to exploit the intrinsic relationship in the semantic manifold when given semantics are not enough to describe the visual objects, and enhance the generalization ability of the visual-semantic function with marginalized strategy. Specifically, we design a Marginalized Latent Semantic Encoder (MLSE), which is learned on the augmented seen visual features and the latent semantic representation. Meanwhile, latent semantics are discovered under an adaptive graph reconstruction scheme based on the provided semantics. Consequently, our proposed algorithm could enrich visual characteristics from seen classes, and well generalize to unobserved classes. Experimental results on zero-shot benchmarks demonstrate that the proposed model delivers superior performance over the state-of-the-art zero-shot learning approaches.Item Marginalized Multiview Ensemble Clustering(IEEE, 2019-04) Tao, Zhiqiang; Liu, Hongfu; Li, Sheng; Ding, Zhengming; Fu, Yun; Computer Information and Graphics Technology, School of Engineering and TechnologyMultiview clustering (MVC), which aims to explore the underlying cluster structure shared by multiview data, has drawn more research efforts in recent years. To exploit the complementary information among multiple views, existing methods mainly learn a common latent subspace or develop a certain loss across different views, while ignoring the higher level information such as basic partitions (BPs) generated by the single-view clustering algorithm. In light of this, we propose a novel marginalized multiview ensemble clustering (M 2 VEC) method in this paper. Specifically, we solve MVC in an EC way, which generates BPs for each view individually and seeks for a consensus one. By this means, we naturally leverage the complementary information of multiview data upon the same partition space. In order to boost the robustness of our approach, the marginalized denoising process is adopted to mimic the data corruptions and noises, which provides robust partition-level representations for each view by training a single-layer autoencoder. A low-rank and sparse decomposition is seamlessly incorporated into the denoising process to explicitly capture the consistency information and meanwhile compensate the distinctness between heterogeneous features. Spectral consensus graph partitioning is also involved by our model to make M 2 VEC as a unified optimization framework. Moreover, a multilayer M 2 VEC is eventually delivered in a stacked fashion to encapsulate nonlinearity into partition-level representations for handling complex data. Experimental results on eight real-world data sets show the efficacy of our approach compared with several state-of-the-art multiview and EC methods. We also showcase our method performs well with partial multiview data.Item Structure-Preserved Unsupervised Domain Adaptation(IEEE, 2019-04) Liu, Hongfu; Shao, Ming; Ding, Zhengming; Fu, Yun; Computer Information and Graphics Technology, School of Engineering and TechnologyDomain adaptation has been a primal approach to addressing the issues by lack of labels in many data mining tasks. Although considerable efforts have been devoted to domain adaptation with promising results, most existing work learns a classifier on a source domain and then predicts the labels for target data, where only the instances near the boundary determine the hyperplane and the whole structure information is ignored. Moreover, little work has been done regarding to multi-source domain adaptation. To that end, we develop a novel unsupervised domain adaptation framework, which ensures the whole structure of source domains is preserved to guide the target structure learning in a semi-supervised clustering fashion. To our knowledge, this is the first time when the domain adaptation problem is re-formulated as a semi-supervised clustering problem with target labels as missing values. Furthermore, by introducing an augmented matrix, a non-trivial solution is designed, which can be exactly mapped into a K-means-like optimization problem with modified distance function and update rule for centroids in an efficient way. Extensive experiments on several widely-used databases show the substantial improvements of our proposed approach over the state-of-the-art methods.