- Browse by Author
Browsing by Author "Linnes, Jacqueline C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Design and development of an integrated mHealth platform to improve kangaroo mother care in Kenya(APHA 2021 Annual Meeting and Expo, 2021-10) Padmanaban, Priya Geetha; Joshi, Siddhi Hareshkumar; Purkayastha, Saptarshi; Ekhaguere, Osayame; Linnes, Jacqueline C.; Esamai, Fabian; Bucher, SherriBackground and Significance: There are 15 million preterm births a year. Premature babies suffer the highest rates of newborn mortality, occurring primarily in low/middle-income countries (LMICs). Neonatal hypothermia (low body temperature) is a life-threatening complication, which is prevented by Kangaroo Mother Care (KMC), but in Kenya, a profound shortage of health workers and lack of resources are barriers to KMC. Our international team has developed an integrated platform (educational and data collection apps + biomedical device) to improve the implementation of KMC in health facilities. Methods: From August 2020 – February 2021, a multi-disciplinary team from the United States and Kenya utilized agile development (weekly scrum meetings) and human-and user-centered design techniques to develop high-fidelity wireframes (Figma) of Android apps which are designed to integrate with a patented self-warming biomedical device (US10390630B2; NG/PT/IC/2016/053394) that utilizes wireless sensors to track KMC babies, continuously monitor infant vital signs, and display physiological data on mobile phones/tablets. Results: High-fidelity wireframes have been developed for two user interfaces of an integrated app, NeoRoo. The NeoRoo-Family app is for KMC parents; the NeoRoo-HealthWorker app is built for nurses and doctors. NeoRoo-Family provides parental caregivers with: (a) automated monitoring of key vital signs for their baby; (c) ability to alert a clinician as needed; (c) tracking of KMC metrics and goals, such as number of hours of skin-toskin care completed in a week; and (d) educational resources for evidence-based newborn care. The NeoRoo- HealthWorker app interface enables clinicians to: (a) simultaneously track breathing, heart rate, temperature, and oxygen saturation for multiple KMC infants in real-time; (b) review each infant’s past clinical history and vital signs trends; (c) receive automated and parent-generated alerts; (d) support harmonized dissemination of key educational messages to families. Conclusions: By providing education, continuous thermal support, and integrated, automated vital signs monitoring for premature babies, via the NeoRoo mHealth platform, we hope to better equip parents and health workers in Kenya to: (1) prevent hypothermia; (2) automatically monitor vital signs in newborns; (3) track key KMC metrics; (4) promote more effective task-sharing among KMC teams. On-going work includes participatory design interviews and a usability assessment.Item Preclinical validation of NeoWarm, a low-cost infant warmer and carrier device, to ameliorate induced hypothermia in newborn piglets as models for human neonates(Frontiers Media, 2024-04-03) Bluhm, Nick D. P.; Tomlin, Grant M.; Hoilett, Orlando S.; Lehner, Elena A.; Walters, Benjamin D.; Pickering, Alyson S.; Bautista, Kevin Alessandro; Bucher, Sherri L.; Linnes, Jacqueline C.; Community and Global Health, Richard M. Fairbanks School of Public HealthIntroduction: Approximately 1.5 million neonatal deaths occur among premature and small (low birthweight or small-for gestational age) neonates annually, with a disproportionate amount of this mortality occurring in low- and middle-income countries (LMICs). Hypothermia, the inability of newborns to regulate their body temperature, is common among prematurely born and small babies, and often underlies high rates of mortality in this population. In high-resource settings, incubators and radiant warmers are the gold standard for hypothermia, but this equipment is often scarce in LMICs. Kangaroo Mother Care/Skin-to-skin care (KMC/STS) is an evidence-based intervention that has been targeted for scale-up among premature and small neonates. However, KMC/STS requires hours of daily contact between a neonate and an able adult caregiver, leaving little time for the caregiver to care for themselves. To address this, we created a novel self-warming biomedical device, NeoWarm, to augment KMC/STS. The present study aimed to validate the safety and efficacy of NeoWarm. Methods: Sixteen, 0-to-5-day-old piglets were used as an animal model due to similarities in their thermoregulatory capabilities, circulatory systems, and approximate skin composition to human neonates. The piglets were placed in an engineered cooling box to drop their core temperature below 36.5°C, the World Health Organizations definition of hypothermia for human neonates. The piglets were then warmed in NeoWarm (n = 6) or placed in the ambient 17.8°C ± 0.6°C lab environment (n = 5) as a control to assess the efficacy of NeoWarm in regulating their core body temperature. Results: All 6 piglets placed in NeoWarm recovered from hypothermia, while none of the 5 piglets in the ambient environment recovered. The piglets warmed in NeoWarm reached a significantly higher core body temperature (39.2°C ± 0.4°C, n = 6) than the piglets that were warmed in the ambient environment (37.9°C ± 0.4°C, n = 5) (p < 0.001). No piglet in the NeoWarm group suffered signs of burns or skin abrasions. Discussion: Our results in this pilot study indicate that NeoWarm can safely and effectively warm hypothermic piglets to a normal core body temperature and, with additional validation, shows promise for potential use among human premature and small neonates.Item Quantitation of Trastuzumab and an Antibody to SARS-CoV-2 in Minutes Using Affinity Membranes in 96-Well Plates(American Chemical Society, 2022) Tan, Hui Yin; Yang, Junyan; Linnes, Jacqueline C.; Welch, Christopher J.; Bruening, Merlin L.; Chemistry and Chemical Biology, School of ScienceQuantitation of therapeutic monoclonal antibodies (mAbs) in human serum could ensure that patients have adequate levels of mAbs for effective treatment. This research describes the use of affinity, glass-fiber membranes in a 96-well-plate format for rapid (<5 min) quantitation of the therapeutic mAb trastuzumab and a mAb against the SARS-CoV-2 spike protein. Adsorption of a poly(acrylic acid)-containing film in membrane pores and activation of the -COOH groups in the film enable covalent-linking of affinity peptides or proteins to the membrane. Passage of mAb-containing serum through the affinity membrane results in mAb capture within 1 min. Subsequent rinsing, binding of a secondary antibody conjugated to a fluorophore, and a second rinse yield mAb-concentration-dependent fluorescence intensities in the wells. Calibration curves established from analyses on different days have low variability and allow determination of mAb levels in separately prepared samples with an average error <10%, although errors in single-replicate measurements may reach 40%. The assays can occur in diluted serum with physiologically relevant mAb concentrations, as well as in undiluted serum. Thus, the combination of 96-well plates containing affinity membranes, a microplate reader, and a simple vacuum manifold affords convenient mAb quantitation in <5 min.Item Towards the use of a smartphone imaging-based tool for point-of-care detection of asymptomatic low-density malaria parasitaemia(BMC, 2021-09-25) Colbert, Ashlee J.; Co, Katrina; Lima‑Cooper, Giselle; Lee, Dong Hoon; Clayton, Katherine N.; Wereley, Steven T.; John, Chandy C.; Linnes, Jacqueline C.; Kinzer‑Ursem, Tamara L.; Pediatrics, School of MedicineBackground: Globally, there are over 200 million cases of malaria annually and over 400,000 deaths. Early and accurate detection of low-density parasitaemia and asymptomatic individuals is key to achieving the World Health Organization (WHO) 2030 sustainable development goals of reducing malaria-related deaths by 90% and eradication in 35 countries. Current rapid diagnostic tests are neither sensitive nor specific enough to detect the low parasite concentrations in the blood of asymptomatic individuals. Methods: Here, an imaging-based sensing technique, particle diffusometry (PD), is combined with loop mediated isothermal amplification (LAMP) on a smartphone-enabled device to detect low levels of parasitaemia often associated with asymptomatic malaria. After amplification, PD quantifies the Brownian motion of fluorescent nanoparticles in the solution during a 30 s video taken on the phone. The resulting diffusion coefficient is used to detect the presence of Plasmodium DNA amplicons. The coefficients of known negative samples are compared to positive samples using a one-way ANOVA post-hoc Dunnett's test for confirmation of amplification. Results: As few as 3 parasite/µL of blood was detectable in 45 min without DNA extraction. Plasmodium falciparum parasites were detected from asymptomatic individuals' whole blood samples with 89% sensitivity and 100% specificity when compared to quantitative polymerase chain reaction (qPCR). Conclusions: PD-LAMP is of value for the detection of low density parasitaemia especially in areas where trained personnel may be scarce. The demonstration of this smartphone biosensor paired with the sensitivity of LAMP provides a proof of concept to achieve widespread asymptomatic malaria testing at the point of care.